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ABSTRACT

A methodology for control augmented structural synthesis is

proposed for a class of structures which can be modeled as an assem-

blage of frame and/or truss elements. It is assumed that both the plant

(structure) and the active control system dynamics can be adequately

represented with a linear model. The structural sizing variables, active

control system feedback gains and non-structural lumped masses are

treated simultaneously as independent design variables. Design con-

straints are imposed on static and dynamic displacements, static

stresses, actuator forces and natural frequencies to ensure acceptable

system behavior. Multiple static and dynamic loading conditions are

considered. Side constraints imposed on the design variables protect

against the generation of unrealizable designs. While the proposed

approach is fundamentally more general, here the methodology is

developed and demonstrated for the case where: (1) the dynamic load-

ing is harmonic and thus the steady state response is of primary

interest; (2) direct output feedback is used for the control system

model; and (3) the actuators and sensors are collocated.

The synthesis methodology is implemented in a research com-

puter program and is used to solve several example problems. These

problems were chosen so that in addition to demonstrating the basic

features of the design methodology, the results could be critically

evaluated through insights into the physical behavior of the system.
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CHAPTER I

Introduction

1.1 Introduction

The design of efficient structural systems is of fundamental

interest to both structural and control system engineers. Systematic

methodologies for both structural and active control system synthesis

(e.g. structural optimization and linear optimal control theory) are well

known and are receiving increased application in the design environ-

ment. However, these design techniques, for the most part, have been

applied independently within the overall design process. Specifically,

a conventional design methodology has evolved in which the structure

is designed subject to prescribed strength and stiffness requirements

(while ignoring the existence of the active control system) with the

active control system being subsequently designed under the assump-

tion that the structure is prescribed. The success of this approach has

been largely due to the fact that the active control systems have been

used primarily to control gross structural motions (e.g. attitude control

of orbiting space structures) while local structural vibrations were

suppressed via the structural design.

Recently, increased interest in the design of highly flexible orbit-

ing space structures, as well as light weight fuel efficient aerospace

and ground transportation vehicles, has motivated a reconsideration of

the conventional structure/control system design approach. There is



now a growing awareness that the design of the next generation of

structural systems will require that the structural and control system

design functions be integrated in some manner. Therefore, the primary

objective of this work is to set forth and demonstrate a control aug-

mented structural synthesis methodology for the simultaneous design

of a structure and its associated active control system.

1.2 Background

Since the early 1970's there has been considerable interest in the

design of efficient control augmented structural systems (Refs. 1-3).

This interest has been particularly intense within the aerospace com-

munity as a result of challenging problems associated with the design

of large flexible orbiting space structures (Ref. 4). It is now generally

recognized that the inherently low stiffness and damping characteristics

of this new generation of structures will require the use of active con-

trol systems, not only for maneuvering and attitude control, but also

for vibration suppression and shape control. Consequently, the appli-

cation of active control technology to the problem of vibration control

in flexible structures has recently received much attention in the litera-

ture (Ref. 5).

Various methods for the design of active control systems for

flexible structures are discussed in Refs. 6-14. The three most com-

mon approaches have come to be known as direct output feedback

(DOFB), modem modal control (MMC) and independent modal space

control (IMSC). Direct output feedback (Refs. 15-18) is, conceptually,

the simplest of the feedback control techniques. This method utilizes

2



control inputs which are explicit linear functions of the system

response. The actuator commands are obtained by electronically multi-

plying the sensor outputs by the feedback gains. These gains are usu-

ally determined via a class of techniques known as pole placement or

pole allocation in which the output feedback gains are chosen so that a

selected set of the closed loop eigenvalues (poles) of the system take

on prescribed values (Ref. 19); although the use of linear optimal con-

trol techniques is possible (Ref. 20). Also, two constrained optimiza-

tion techniques have recently been suggested in Refs. 21 and 22 where

the damping characteristics of the system are enhanced while minimiz-

ing the feedback gains.

As an alternative to calculating the control forces directly from

the system outputs, the modem modal control methods are based on

the concept of state variable feedback. In this approach the actuator

commands are determined via multiplication of the system states and

the state feedback gains. While this approach is conceptually similar

to DOFB, additional complexity arises from the fact that, in general,

the states are not directly measurable. Therefore, MMC requires that

the state variables be reconstructed from the sensor output measure-

ments through the construction of an auxiliary dynamical system

known as an observer (Ref. 19). Fortunately, the controller and

observer design problems are separable. Therefore, the state feedback

gains can be determined independently, under the assumption that the

states are observable. As was the case with the DOFB approach, the

state feedback gains can be determined via both pole placement and

linear optimal control techniques. However, the application of linear

3



optimal control techniques is most prevalent in the literature (e.g. Refs.

23-26).

The last of the three common active control design techniques is

known as independent modal space control (Refs. 27-29). This

method utilizes both internal and external decoupling mechanisms such

that the control is applied to each mode of the structure independently.

The decoupling process consists of, first, decoupling the uncontrolled

system equations of motion via the normal mode method (Ref. 30) and

then introducing the controls directly into the modal equations of

motion. These modal control forces are assumed to be functions only

of the coordinates associated with a single modal equation and are

given by the product of the modal coordinates and the modal feedback

gains. As before, the feedback gains can be calculated by both pole

placement and linear optimal control techniques. Moreover, since the

modal controls are independent of each other the computation of the

gains for each mode can be performed independently, thereby

significantly reducing the computation effort associated with the design

process. However, since the controls are designed in the modal space,

the IMSC method requires a final additional step for implementation.

In this step the real actuator forces must be determined from the modal

control forces. This is accomplished, in effect, through the construc-

tion of a modal observer which reconstructs the modal coordinates

from the sensor output measurements. A relatively simple observer

can be constructed if the numbers of actuators and sensors is equal to

the number of modes to be controlled (Ref. 31). Unfortunately, this

requirement can represent a rather serious burden in terms of hardware

4



costs for large systems. Recently, however, an alternative modal

observer formulation (based on a pseudo-inverse) which requires fewer

actuators and sensors was proposed (Ref. 32).

The active control system design techniques described above all

operate under the assumption that the structure (plant) has been previ-

ously designed and, therefore, its stiffness, mass and damping charac-

teristics are known. The actual design of the structure is traditionally

the responsibility of the structural engineer. The development of sys-

tematic methodologies for structural synthesis has received much atten-

tion over the past 25 years and techniques applicable to a significant

class of structural design problems are well developed. A history of

its development and the current state-of-the-art of structural synthesis

are given in Refs. 33-38.

Primarily, three approaches to systematic structural design have

been explored. Two of these approaches, one based on mathematical

programming methods (Ref. 39) and the other on optimality criteria

(e.g. Refs. 40-41) have received the most attention. The optimality

criteria methods are based on a statement of the necessary conditions

that must be satisfied at the optimum design. This optimality criterion

is formulated via a priori assumptions as to the number and types of

failure modes characterizing the optimum design (e.g. fully stressed

design). These methods are generally computationally efficient and

yield good results, if the failure modes have been correctly identified,

but suffer somewhat in that they are not easily applied to a general

class of structural design problems.

5



In the mathematical programming based techniques, the struc-

tural design problem is formulated as a nonlinear programming prob-

lem (NLP) in terms of a design objective and performance require-

ments (behavior constraints). The NLP is then solved for the optimal

values of the design variables. This approach is quite general and can

easily accommodate different design objectives and the simultaneous

consideration of a variety of possible failure modes. Its generality of

application and its recent interpretation as a generalized optimality cri-

teria method (Refs. 42-43) have established this approach as the

predominate structural synthesis tool.

Another structural design technique has received some limited

attention. This approach, based on optimal control theory, has, for the

most part, been applied to the design of distributed parameter systems

(e.g. Ref. 44, Chapter 6). It has been demonstrated, primarily, on

small component level design problems. The application of optimal

control techniques to the design of large structures modelled as lumped

parameter systems has seen only limited investigation (e.g. Ref. 45).

In the past, the structural (passive) and active control system

design techniques described herein have been applied independently

within the overall design process. Recent concerns over the design of

large flexible space structures have generated interest in interdisci-

plinary approaches to the design problem (Refs. 46-47). This interest

has been heightened as a result of both numerical and experimental

demonstrations of the synergic nature of active and passive control

techniques (Refs. 48-50). Consequently, in the past few years several

6



simultaneous design methodologies have been proposed.

One class of methods utilizes linear optimal control theory to

unify the structure/control design process. In this approach, the

optimal controls are expressed as a function of the structural design

variables and a design problem is then formulated in terms of the

structural variables alone. In Ref. 51, this design problem consists of

the minimization of a quadratic performance index subject to a con-

stant structural mass constraint. Reference 52 constructs a composite

objective function (structural mass plus quadratic performance index)

which is minimized subject to constraints on the open loop eigenvalues

via an optimality criterion method. In both cases the optimality condi-

tions for linear optimal control are used to reduce the dimensionality

of the design space.

An alternative approach, which treats both the structural and

control variables as design quantities, is given in Ref. 53. In this case

the structural and active control system design problems are performed

sequentially within an iteration loop and are coupled through the con-

straints of the structural synthesis problem. The control system is

designed first with the structural variables held constant. Then the

structural mass is minimized subject to inequality constraints on the

closed loop eigenvalues, with the control variables held constant. The

process is repeated until convergence is attained.

Neither of the approaches discussed above actually integrates the

structural and active control system design problems into a single syn-

thesis problem statement in terms of an independent set of structural

7



and control design variables. Several other recent works, however,

have begun to address this task. In Ref. 54, the integrated design

problem is posed as the minimization of a composite objective func-

tion (structural mass plus quadratic performance index). The minimi-

zation process is carried out via numerical solution of the necessary

conditions for the existence of an extremal control-structural parameter

pair. In Ref. 55, a minimum modification strategy is developed which

uses either direct output feedback control or steady state regulator con-

trol in conjunction with two distinct objective functions, namely,

eigenvalue placement and minimum control gain Euclidian norm. The

design variables considered include structural parameters, actuator

locations, sensor locations and control gains. In Ref. 56 an eigenspace

optimization approach is presented which also includes structural

parameters, sensor/actuator locations, and control feedback gains in the

design variable set. Two basic ideas underlie the approach taken in

Ref. 56: (1) regions of the design space where the eigenvalue solution

exhibits "extremely high sensitivity are generally undesirable," and (2)

"rather than attempting to prescribe an exact point location for every

eigenvalue, it is more reasonable to move all of the eigenvalues into an

acceptable region of the complex plane." In Ref. 57, a truss structure,

modeled as an equivalent continuum, is designed together with its

active control system. The design problem is posed as the minimiza-

tion of a composite objective function (structural mass plus steady

state response) subject to inequality constraints on the closed loop

eigenvalues and the structural design parameters. The analysis is for-

mulated in the frequency domain and the optimization is carried out

8



using a nonlinear least squares algorithm.

1.3 Scope of the Work

Previous approaches to integration of the structural and active

control system design functions into a unified synthesis methodology

(with independent structural and control design variables) are deficient

in several aspects. Probably the most serious difficulty with these

methods is their failure to impose design constraints directly on the

structural response quantities (e.g. dynamic displacements) and the

actuator forces. Instead, the design of a system having acceptable

response characteristics and control effort requirements is attempted

through: 1) the imposition of constraints on the closed loop eigen-

values and/or 2) the selection of appropriate weighting matrices to be

used in the formulation of a quadratic performance index. In either

case, considerable experience and insight are required to select the

parameters which will yield an acceptable design. This is especially

true in the selection of the weighting matrices, where it is not uncom-

mon to iterate several times in order to achieve the desired system

response (e.g. Ref. 58).

Another shortcoming of many existing structure-control syn-

thesis methodologies is that they are not easily extended to include of

constraints associated with static loading conditions (e.g. static dis-

placement and stress constraints). While it is true that many structural

design problems may be dominated by constraints associated with

dynamic loading alone, it is nevertheless important, for a significant

class of structures, to address the possibility that both static and
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dynamic failure modes as well as multiple load conditions will drive

the design.

Other important considerations in the simultaneous design of

structure-control systems, which have not been treated and will not

specifically be addressed in this work, include: 1) plant modeling

errors, 2) output sensing errors and 3) time delays in the control sys-

tem dynamics.

In this work, a general methodology for control augmented

structural synthesis is proposed for a class of structures which can be

modeled as an assemblage of frame and/or truss elements. Structural

sizing variables, active control feedback gains and lumped non-

structural masses are treated simultaneously as independent design

variables. Lower bound side constraints on the feedback gains are

used to indirectly guard against dynamic instability (Ref. 18). Design

constraints are imposed on dynamic displacements, actuator forces,

undamped natural frequencies, static displacements, and static stresses.

Multiple static and dynamic load conditions can be taken into account.

Furthermore, the option to expand the design space by allowing

independent feedback gain design variables, for each of several

dynamic load conditions, is included. It is assumed that both the plant

(structure) and the active control system dynamics can be adequately

approximated with a linear model. While the proposed approach is

fundamentally more general, here the methodology is developed and

demonstrated for the case where: (1) the dynamic loadings are har-

monic and therefore the steady state responses are of primary interest;
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(2) direct output feedback is used for the control system model; and

(3) the actuators and sensors are collocated.
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CHAPTER II

The Control Augmented Structural Synthesis Problem

2.1 Introduction

During the past decade optimization via general nonlinear

mathematical programming methods has become widely accepted as a

viable methodology for structural design. Here, mathematical pro-

gramming methods have been coupled with finite element based struc-

tural analysis techniques, through the application of approximation

concepts (Refs. 59-61), to yield a powerful design tool. Due to its

generality, this approach is well suited for application to the design of

control augmented structures. In this chapter the control augmented

structural synthesis problem is formulated as a general nonlinear ine-

quality constrained mathematical programming problem having a com-

posite objective function. This problem is then replaced by three alter-

native nonlinear programming problems, each of which has a single

distinct design objective.

2.2 Problem Formulation

An important class of control augmented structural synthesis

problems may be stated as follows: seek a design _ which minimizes

some measure of the system's performance subject to the condition

that all appropriate measures of the system's behavior and all design

variables remain within prescribed bounds. Mathematically, this state-

ment can be written in the form of a nonlinear mathematical
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programming problem as

min_ c 1 M(Y) + c2 J(Y)
D

s.t. G(Y) < -0
(2-1)

where the objective function is a weighted sum of the mass M and a

performance index J, Y is a vector of design variables, G is a vector of

behavior constraints (e.g. static and dynamic displacements, frequen-

cies, static stresses, actuator forces), and _-v and _t. are upper and

lower bounds on the design variables. In this work it is assumed that

the structural topology, configuration, materials and loading conditions

are prescribed and that the number and locations of the control system

actuators and sensors are also specified. The design variables include

the structural sizing variables, the control system feedback gains and

lumped non-structural masses. For frame-truss structures the element

sizing variables are, typically, cross sectional dimensions (CSD's)

and/or the element reciprocal section properties (Ref. 61). Here the ele-

ment CSD's have been chosen as the sizing variables.

Either of two options may be selected with respect to control

system feedback gain design variables when multiple dynamic load

conditions are involved: (1) the number of feedback gain design vari-

ables is equal to 2 per actuator (position gain and rate gain); (2) the

number of feedback gain design variables is equal to 2 x K a per actua-

tor, where K a equals the number of distinct dynamic load conditions.

It should be understood that the foregoing options describe the number

13



of independent feedback gains prior to any linking of the control sys-

tem design variables.

The synthesis problem statement represented by Eq. (2-1) is not

completely defined until the weighting factors (c 1 and c2) in the objec-

tive function are selected. While there is no conceptual difficulty with

solving the problem, given specific values for the weighting

coefficients, the a priori selection of appropriate values for c 1 and c 2

can be quite difficult. In fact, it is often necessary to solve such a

problem several times with different values of the weighting

coefficients before the desired design objective is obtained. An alter-

native approach to the problem is to consider the following two special

cases: 1) the case where c 1=1 and c2=0, and 2) the case where

c 1 = 0 and c2 = 1.

In the first case, the design problem objective function is simply

the mass. A constraint can be added to the problem statement to limit

the maximum allowable value of J, since it is not now represented in

The resulting problem statement is as follows:the objective function.

min M(_
Y

s.t. G(Y) < -6

j(F.) <_ju (2-2)

where ju is the upper bound on the performance index.

14



In the second case, the objective function includes only the per-

formance index. Placing an upper bound constraint on the mass yields

the following problem statement:
min J(_

G(Y) <_0

M(_ < M v

fL <_g<_fv
where M e is the upper bound on the mass.

(2-3)

To complete the control augmented structural synthesis problem

statements given by Eqs. (2-2) and (2-3) the form of the performance

index must be considered. Typically, in the design of active control

systems, a quadratic measure of the system response and control effort

is used. In this work, since the loading under consideration is har-

monic and the response of interest is steady state, the following linear

form can be used:

J(_ = JR(Y) + Jc(_ = _., 2 Qjklujk(Y)l + _., 2 Riklf Aik(7)l
k j k i (2-4)

where JR and Jc are the portions of the performance index associated

with the system response and control effort, respectively. In Eq. 2.4

lu/AY')I represents the magnitude of the j-th displacement degree of

freedom in the k-th dynamic load condition, IFa,_(g)l represents the

magnitude of the i-th actuator force in the k-th dynamic load condition,

and the Qjk, R_ denote the corresponding weighting factors.

The direct substitution of Eq. (2-4) into Eqs. (2-2) and (2-3) will

yield a complete statement of the control augmented synthesis prob-
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lem. However, the form of the performance index (Eq. (2-4)) leads to

computational difficulties similar to those discussed relative to the use

of a composite objective function formulation (i.e. structural mass

plus performance index). Specifically, the design problem solution is

dependent on the relative values assigned to the two sets of weighting

factors Qjk and R_.

For the problem represented by Eq. (2-2) this difficulty can be

alleviated by replacing the single performance index constraint with

two constraints, giving

min M(_
Y

s.t. G(Y) < 0

Jc( <- (2-5)

where Jg and Jcu are upper bounds on a measure of system response

and control effort, respectively. It should be noted that for many prac-

tical design problems the existence of nodal displacement constraints

in the set of behavior constraints (G(Y)) will adequately constrain the

system response and, in those cases, the constraint on JR can be

removed from the problem statement.

For the design problem given by Eq. (2-3) the substitution of

Eq. (2-4) leads to a composite form of the objective function. Again,

it is useful to consider two special cases. First, letting the R/k = 0 Eqs.

(2-3) and (2-4) combine to yield
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mi_n JR(_
Y

s.t. G(Y) < 0

M(_ <_M v

Jc(7)<-

iz < Y<<_

(2-6)

where the upper bound constraint on Jc is added to compensate for the

removal of the control effort measure from the objective function.

Similarly, letting the Qjk = 0 gives

min Jc(_
Y

s.t. G(Y) < 0

M(Y) < M v

<_ (2-7)

where the upper bound constraint on JR is added to compensate for the

removal of the response measure from the objective function (although

it may be ignored for certain problems as described previously).

The three control augmented structuralsynthesis problems stated

in Eqs. (2-5), (2-6) and (2-7) are applicable to the design of a

significant class of structures and their associated active control sys-

tems. These problem formulations can be applied to achieve any one

of the following three design objectives: 1) minimization of mass (Eq.

(2-5)), 2) minimization of the structural response associated with

selected degrees of freedom (Eq. (2-6)) and 3) minimization of total

control effort (Eq. (2-7)). The solution to these problems can be
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attempted via the direct application of various nonlinear programming

algorithms. However, since both the objective functions and the con-

straints are, in general, complicated, implicit, nonlinear functions of the

design variables this direct approach is computationally impractical

even for small systems. A more tractable approach to the solution is

to replace these implicit nonlinear problems with explicit approximate

problems of reduced dimensionality. These problem statements are as

follows:

and

rain /14(_
g

s.t. _q(Y) < 0; qeQ R

_(_ <_J_
_(_ <_g_
_<_g<___

min_(7")
Y

s.t. "_q(Y-) <- O;

M(Y) <_M U

Yd_ <-J_
gL< g<__v

qe QR

rain fc(_
g

s.t. _q(_ < O; q_QR

_I(Y) <__M U

Y_(_<_J_
_<_g<gv

(2-8)

(2-9)

(2-10)

where 1VI,JR and Jc are explicit approximations of the mass, response
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measure and control effort measure, gq are explicit approximations of a

subset QR of the original behavior constraints and Y is now the vector

of linked design variables. The vectors _u and _ are the stepwise

upper and lower bounds on the design variables and they are chosen to

protect the quality of the approximations.

The solution to the original problems (Eqs. (2-5) - (2-7)) is

obtained via the iterative construction and solution of a sequence of

approximate problems having the form of Eqs. (2-8) - (2-10). The

generation and solution of each approximate problem consists of the

following three phases: 1) analysis, 2) approximate problem generation

and 3) optimization. These three solution phases are applied iteratively

(see Fig. 1) until convergence is attained. Each of these phases is

described in detail in the following chapters.
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CHAPTER HI

Structural Analysis

3.1 Introduction

The structural analysis is an essential phase in the solution of

the control augmented structural synthesis problem. The solution of

the analysis problem yields the primary response quantities (e.g. fre-

quencies, nodal displacements and element forces) required for the

evaluation of the design constraints. While there are several tech-

niques available for solving this problem, the method chosen here is

the well known finite element displacement method (e.g. Ref. 62).

This method is particularly attractive within the context the control

augmented structural synthesis because 1) a variety of structures and

loading conditions can be treated in a unified manner, 2) the method is

relatively efficient and easy to implement, 3) the method is well suited

for subsequent response quantity sensitivity calculations and 4) the

method lends itself to the integration of the structural and control sys-

tem models.

While the finite element method is applicable to a more general

class of problems, those considered here are control augmented frame-

truss structures subject to multiple static and harmonic dynamic load-

ing conditions (including discrete nodal loads and loads uniformly dis-

tributed along the element) with homogeneous displacement boundary

conditions. The underlying analysis equations are described in detail

20



in the following sections.

3.2 Static Analysis

The equations governing the response of a linear structural sys-

tem subject to multiple static loading conditions are of the form

[K]{u}k = {P}k; k = 1,2,...K s
(3-1)

where [K] is the structural stiffness matrix, {u}k and {P}k are the vec-

tors of unknown displacements and known applied nodal loads

(corresponding to the k-th loading condition), and K s is the total

number of static loading conditions. Eqs. (3-1) represent a set of

linear simultaneous equations which can be generated from the element

level stiffness matrices [K] 7 and load vectors {P}_k using an assembly

technique known as the direct stiffness method (Ref. 62). The

stiffness matrices and work equivalent load vectors (for uniformly dis-

tributed loading) for the space frame and truss elements are given in

Appendix A.

Prior to the actual assembly of the system stiffness matrix and

load vectors the element level quantities [K] e and {P}._ must be

expressed in terms of a common system level or global coordinate sys-

tem. This is accomplished by using the following transformation

equations

[K]g = [T]T[K]e[T]i

{P}_k= [T]/r{P}_ (3-2)

where [K],g and {P},gk are the element level stiffness matrix and load
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vector, in global coordinates, for the i-th structural element.

orthogonal transformation matrix [T] i has the general form

[ti]

[ti]

[T]i .-

[ti]

[ti]

The

(3-3)

where (dropping the subscript i for convenience)

[tl = [Ral[Ro][R_]

and

[R_] = 1 o 0)0 cos_ sincx

0 -sins coscx

(3-4)

[R0] =

cos0 sin0 1

-sinO cos0 0

0 0 0
(3-5)

[RB] =

cosl3 0 sinl3

0 1 0

-sin_ 0 cos_

The angles cx, 0 and 13, between the local and global coordinate sys-

tems, are shown in Fig. 2. It should be noted that the matrix [t] for

the space truss element reduces to the form
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[t] = [R0I[RI3] (3-6)

by virtue of the fact that cx may be arbitrarily set to zero making [Ra]

an identity matrix.

Once Eqs. (3-1) have been assembled the homogeneous dis-

placement boundary conditions may be applied. Conceptually this is

done by eliminating those equations associated with the boundary

degrees of freedom (in actual implementation these equations are never

assembled). With the appropriate boundary conditions imposed Eqs.

(3-1) represent a positive definite system of equations which can be

solved for the unknown displacement vectors {u} k. The solution

method used here is based on a modified Cholesky decomposition

technique which replaces [K] by a factorization of the form

[K] = [L][D][L] r
(3-7)

where [L] is a lower triangular matrix and [D] is a nonsingular diago-

nal matrix. Once [K] has been decomposed the solution vectors {u} k

are obtained through the usual series of forward and backward substi-

tutions. It is important to recognize that significant computational and

computer storage savings can be realized by taking advantage of the

banded structure of Eqs. (3-1). Therefore, in this study, the solution

method described above is implemented for a compact "skyline"

storage arrangement of [K] as described in Ref. 63.

Having calculated the nodal displacement vector {u}k;

k = 1,2,...K s, the end forces for the i-th structural element are given by
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{FITk = [K] e {uIek + {FEFIek
(3-8)

where {F}_, {u}Tk and {FEF}_k are the forces, displacements and fixed

end forces (corresponding to the uniformly distributed loading) associ-

ated with the i-th element for the k-th loading condition, written in the

local coordinate system. The local displacements {u}Tk are calculated

from the global displacement vector {u}ik via the transformation

{UIek -- [T]i{u}i k
(3-9)

where it is understood that {u}ik is the subset of the global displace-

ment vector {u} k associated with the i-th element. The fixed end

forces {FEF}_ k for the uniformly distributed loading are given by

{FEF}_k =- {P}_k (3-10)

where {P}Tk is the work equivalent loading vector as defined in Eqs.

(A-13) and (A-23) for the frame and truss elements, respectively.

3.3 Dynamic Response Analysis

The discretized equations of motion for a linear structural system

subject to multiple dynamic loading conditions are given by the fol-

lowing second order differential equation:

[M]{/iIk + [C]{fiIk + [K]{uIk = {e(0}k; k =

where [M] is the system mass matrix, [C]

1,2...K a
(3-11)

is the viscous damping

matrix, [K] is the structural stiffness matrix, and {//}i,, {fi}k and {u} k

are the nodal accelerations, velocities and displacements corresponding

to the k-th dynamic loading vector {P(t)} k. Note that the system mass

matrix [M] consists of two parts, that is
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[MI= [Ms]+ [ML]
(3-12)

where [Ms] denotes the structural mass matrix and [ML] represents the

mass matrix associated with nonstructural lumped masses. Equation

(3-11) can be generated via the assembly of the element level matrices

[Mi] e, [Ci] e and [gi] e, along with the load vectors {ei}_, in the same

way that Eqs. (3-1) are formed. The stiffness and consistent mass

matrices for the space frame and truss elements are given in Appendix

A. The element level damping matrix ([Ci] e) for a viscous damper can

be generated from the truss element stiffness matrix by replacing

(EA/L)i by the viscous damping coefficient ci.

Equation (3-11) can be augmented to include the effects of the

active control system by introducing the discretized control system

actuator forces {N(t)}k, giving

[M]{/t'}k + [C]{tJ} k + [K]{u} k = {N(t)} k + {P(t)} k ;

k=-l,2...K a

(3-13)

As was discussed in Chapter I, the actuator forces can be

described in terms of either output, state or modal feedback gains. In

this investigation, direct output feedback (Refs. 15-18) is used for the

following reasons: 1) it leads to a control system which is relatively

easy to implement, 2) a stable control system design based on an unc-

ertain plant model will not result in an unstable system when applied

to the real structure (i.e. the controller is robust, Refs. 6, 15, 18), 3)

both the controllability and observability of the system are independent

25



of the feedback gains (Ref. 19) and 4) the robustness properties of the

controller are preserved in the face of certain unmodeled

sensor/actuator dynamics (Ref. 64).

The actuator forces can be written in terms of the system level

position and velocity feedback gain matrices [Gp] k and [Gv] k as

{N(t)} k =- [Gv]k{tJ}k- [Gp]k{u}k
(3-14)

For the general case, the feedback gain matrices can be obtained

from the equations (Refs. 15, 18)

[Gv]k = [ba][Hv]k[bv]

and

(3-15)

[Gp] k = [ba][np]k[b p]

where the jxm matrix [ba] relates the actuator outputs

ponents of {N(t)} k. The mxn matrices [Hv] k and [Hp] k

(3-16)

to the com-

contain the

velocity and position feedback gains for the k-th dynamic load condi-

tion, and the nxj matrices [b v] and [bp] relate the components of {u}k

and {u} k to the velocity and position measurements. The dimensional

quantities j, m, and n represent the number of degrees of freedom in

the structural model, the number of actuators and the number of sen-

sors, respectively. From the form of Eqs. (3-15) and (3-16) it is clear

that the construction of system level feedback gain matrices depends

on the location and orientation of the actuators and sensors and on

how the sensor measurements are fed back to the actuators.

26



As an alternative to the general representation of the feedback

gain matrices given by Eqs. (3-15) and (3-16), it is also possible to

generate [Gv]k and [Gp]k via the concept of a control element. In this

approach, the system level feedback gain matrices are assembled from

element level gain matrices associated with control elements having

pre-defined numbers of actuator and sensors and known actuator/sensor

feedback schemes. One such element, which is similar in concept to a

member damper (Ref. 6), is the member controller. This element (see

Appendix B) can be thought of as a single force actuator connected

between two points on the structure with a position and velocity sensor

at each end of the actuator. These elements can be introduced into the

system model as required and then assembled into the system feedback

gain matrices in the same way that the structural elements are assem-

bled. In this work the control system representation implemented is

based exclusively on the use of axial force controller elements.

Given that the actuator forces have the form of Eq. (3-14), the

closed loop equations of motion (Eq. (3-13)) can be written as follows:

[M]{/t'}k + [CA]k{/J}k + [KA]k{U} k = {P(t)}k;

k=-l,2...K a

(3-17)

where the control augmented damping and stiffness matrices are given

by

[CA] k = [C] + [Gv]k
(3-18)

and
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[ga]k = [hq + [Gpk
(3-19)

For the case where the external dynamic loading is harmonic, that is

{P(t)}k = {P}k (c°sf2kt + i sinf2kt) = {P}ke if_kt

the steady state solution of Eq. (3-17) has the form

(3-20)

{u} k = {uR} k + i{ul} k = ({cR} k + i{ct}k)e if_kt

Substituting Eqs. (3-20) and (3-21) into Eq. (3-17) gives

(3-21)

(-_2_[M] + if2k[CA] k + [KA]k)({CR} k + i{ct}k)e if_kt =

{ p }kei_kt
(3-22)

Equation (3-22) can be modified to include structural damping as fol-

lows

(f_[M] + i£_k[CA] k + [KA] k + i_K])({CR}k + i{ci}k)e i_kt =

where y denotes the structural damping coefficient.

(3-23)

Eliminating e if_kt from both sides and equating the real and imaginary

parts of Eq. (3-23) leads to the following matrix equations:

[Kalk--n_[M]

f_k[Cak+'c[g]

--tak[CAk--_K] {cRIk

[Xak-f_[M]

{P}k

{o}

(3-24)

For the general case, Eq. (3-24) represents a 2n x 2n set of indefinite,
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non-symmetric linear simultaneous algebraic equations in the unk-

nowns {cR} k and {ci}k, where n is the order of the system model.

These equations can be solved directly using any one of a number of

well known linear equation solvers, although numerical ill-conditioning

may occur near resonance if the system is not sufficiently damped. An

alternative to the direct solution of Eq. (3-24), which requires the solu-

tion of two n x n sets of linear algebraic equations, is described in

Appendix C. It should also be noted that the efficiency of the solution

process can be enhanced for the case where [KA]k and [CA] k are sym-

metric by rewriting Eq. (3-24) in the following symmetric form:

E? lI c,}l 0,1
(3-25)

This will be the case when the active control system is modeled with

the member controller elements described previously.

Once Eq. (3-25) has been solved the steady state solution is

obtained by substituting {cR} k and {ct} k into Eq. (3-21). Substituting

the following well known identity

e if_g = cos_2kt + i sinf2kt
(3-26)

into Eq. (3-21) yields the steady state response in the alternate form

where

{u} k = {uR} k + i{uI} k
(3-27)
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and

{UR} k = {CR} k COS_kt- {Cl} k sinf_kt
(3-28)

{ui} k = {CR}k sin_t,t + {ci} k COS_kt
(3-29)

The sine and cosine components of the dynamic displacements can be

combined for the j-th degree of freedom as follows:

URjk= lujklsin(f2kt + Wjk)

where

Eqs.

%_ = lujklsin(K2kt + _jk)

(3-30)

(3-31)

tan Iltjk = -cRJcl_k

tan d_jk= %]CRjk

(3-32)

(3-33)

(3-34)

Having calculated the steady state dynamic displacements using

(3-27), (3-28) and (3-29) it is now possible to recover the

corresponding actuator forces. The velocity vector is obtained by

differentiating Eqs. (3-27), (3-28) and (3-29) with respect to t yielding

and

{ti}k = {fiR} k +/{fit} k

{fiR}k = --f_k{CR}k sinflk t - f_k{CI}k COSf_kt = --_k{Ut }k

(3-35)

(3-36)

{fit} k = f21,{cR} k cosf2kt- f2k{ct}i, sinf2kt = f2k{uR} k
(3-37)

For the general case, the steady state dynamic actuator forces are
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obtained by substituting Eqs. (3-27) - (3-29) and Eqs. (3-35) - (3-37)

into the actuator force equation

{FA} k =- [nv]k[bv]{U}k- [np]k[bp]{U}k

For the member controller, the element level steady state

forces are obtained for the ith actuator by substituting Eqs.

(3-29) and Eqs. (3-35) - (3-37) into Eq. B-4 giving

{FA}ek = {FAR}._ + i{FAt}ek

{FAR}ek = -- {F2}. _ sinf2kt + {F1}iek cosf2kt

and

(3-38)

actuator

(3-27) -

(3-39)

(3-40)

where

{FAl}iek = + {F1}iek sinf2kt + {F2}iek COS_2kt
(3-41)

and

e e
{F1}i_ = _2k[Hv]ek{ci}ek- [Hp]ik{CR}ik

(3-42)

_"2k[Hv]ik{CR}ik- [Hp]ek{¢l}eik{F2}iek = _ e e
(3-43)

In Eqs. (3-42) and (3-43) [Hp]_: and [Hv] _ represent the position and

velocity feedback gain matrices for the i-th control element in the k-th

dynamic load condition. The vectors {cR}[k and {ct}[k are calculated

from {cR} k and {ct} k via the transformations

{ CR}iek : [T]i{ CR }ik
(3-44)

and
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{¢I}eik -- [T]i{Cl}ik (3-45)

where it is understood that the vectors {Cl_}ik and {ct}ik are subsets of

the vectors {cR} k and {ci} k associated with the i-th control element.

Like the dynamic displacements [see Eqs. (3-30) - (3-34)] the

sine and cosine terms of the actuator forces can be combined for each

force component giving

F_ = [Faalsin(_kt + _ik)

and

F_ = IPa,klsin(f2kt + V/k)

rite _211/2
If_l = [(f_.a)2 + _' 2_ J

tan _ik = F[a/Fela

tan vik =- Fel_/F[,k

where

(3-46)

(3-47)

(3-48)

(3-49)

(3-50)

3.4 Eigenvalue Analysis

The discretized equations of motion governing

vibration of a linear structural system are given by

[M]{//} + [K]{u} = {0}

the undamped

(3-51)

where [M] is the system mass matrix (see Eq. 3-12), [K] is the struc-

tural stiffness matrix and where {//} and {u} are vectors of nodal

accelerations and displacements, respectively. It is well known (e.g.

Ref. 30) that the solution to Eq. (3-51) has the form
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{u(t)} = {c_}e/_ (3-52)

where {c_} and corepresent the spatial distribution and frequency of the

motion. Substituting Eq. (3-52) into Eq. (3-51) and simplifying yields

given by the followingthe structural dynamic eigenvalue problem

equation:

[J_]{q_} = 032 [2_{_}

(3-53)

Alternatively, Eq. (3-53) may be written to include all of the modeled

frequencies and mode shapes as follows:

[K][_] = [M][_][CO 2] (3-54)

where [co2] is the diagonal matrix of natural frequencies and where [q_]

contains the corresponding mode shapes. Various methods can be

employed to solve Eq. (3-54). In this work a subspace iteration tech-

nique is used to solve for a subset of the natural frequencies and mode

shapes (Refs. 65-66) of the undamped structural system.
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CHAPTER IV

Approximate Problem Generation

4.1 Introduction

The key to a tractable control augmented structural synthesis for-

mulation lies in the replacement of the original implicit nonlinear

design problem with a sequence of explicit approximate problems of

reduced dimensionality. The generation of these approximate problems

is accomplished through the application of a variety of techniques

commonly referred to as approximation concepts (Refs. 59-61). Pri-

marily, these techniques serve to 1) reduce the numbers of design vari-

ables and constraints in the design problem and 2) reduce the required

number of detailed (exact) constraint and objective function evalua-

tions. There are various methods available for this purpose. Those

implemented here include design variable linking, temporary constraint

deletion and explicit first order constraint approximations. These tech-

niques form the foundation of the approximate problem generation pro-

cedure which consists of the following steps: 1) objective function

evaluation, 2) constraint evaluation, 3) temporary constraint deletion

and 4) objective function and constraint approximation. This procedure

is described in detail in the following sections.

4.2 Objective Function Evaluation

As was discussed in Chapter II three distinct choices of objec-

tive function are available. They are 1) system mass, 2) dynamic

response at selected degrees of freedom and 3) control effort. Each of
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these objective functions can be written as a function of the intermedi-

ate variables X which are chosen to be the reciprocal element proper-

ties (REP's) (i.e. 1/A for truss elements; 1/A, 1/J, 1/ly and 1/I z for

frame elements; 1/hpk and 1/hvk for control elements; and 1/m for non-

structural mass elements). In the first case the objective function is

given by

M(X) = _E PiAiLi + E ml
i t (4-1)

where Pi, Ai and L i are the mass density, area and length of the i-th

structural element and m t denotes the l-th lumped mass.

For the second case the objective function can be written as

J (L = E E lujj01
k j (4-2)

where lujk(X)l is the magnitude of the j-th dynamic displacement in the

k-th dynamic load condition and Qjk is its associated weighting

coefficient. The weighting coefficients are chosen such that Qjk is

equal to zero for displacement quantities which are not to be included

in the objective function. Otherwise,

(4-3)

where u -1 is the allowable value associated with the dynamic displace-ajk

ment constraint imposed on ujk(Tt'). Consequently, Eq. (4-2) can be

rewritten as
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y_,
j,k_NR Uajk (4-4)

where N R is the set of dynamic displacements included in JR by the

nonzero Qjk.

In the third case the objective function is given by

gd
Jc(_Z) = _ ]_ Rik IFa,k(_')l

k=l iE/c (4-5)

where IFA_(X)I is the magnitude of the i-th actuator force in the k-th

dynamic load condition, Rik is its associated scaling factor, I c denotes

the set of actuator forces included in Jc, and K d equals the number of

independent dynamic loading conditions. The elk coefficients are

given by

R/k = F2_1
a_ (4-6)

where Faa is the allowable value of the i-th actuator force. Using Eq.

(4-6) the control effort objective function can be written as

to, IFaa(_l

Jc(Ft') = _ _' F (4-7)
k=l i_Ic aik

4.3 Constraint Evaluation

The definitions of acceptable behavior are central to the control

augmented structural synthesis problem statement. These definitions

are included in the mathematical problem statement in the form of

behavior constraints. Five basic types of behavior constraints are

included here: 1) constraints on overall static structural stiffness (in the
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form of nodal displacement/rotation constraints), 2) constraints on local

element static strength (i.e. stress constraints) 3) constraints on steady

state dynamic nodal displacements and rotations, 4) constraints on

dynamic steady state actuator forces and 5) constraints on undamped

natural frequencies.

The following options to impose additional constraints are

included: 1) upper limits on response index JR and control effort index

Jc when mass minimization is the objective (see Eqs. 2-5); 2) upper

limits on system mass M and control effort index Jc when response

index minimization is the objective (see Eqs. 2-6); and 3) upper limits

on system mass M and response index JR when control effort index

minimization is the objective (see Eqs. 2-7).

All of the constraints described above can be written as follows;

gq= Rq- 1 <0

where the response ratio Rq

(4-8)

is the ratio of some measure of the system

behavior to its associated allowable value. This ratio is constructed

such that it approaches unity as the behavior constraint becomes criti-

cal.

For each type of constraint the response ratio can be written in

terms of the primary structural response quantities, the element REP's

(X), the design variables (Y) and the allowable values. For the static

displacement constraints Rq is given by
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eq(X) = Uq(_)

Uaq (4-9)

where uq(X) is a single displacement quantity associated with the q-th

displacement constraint and Uaq is its associated allowable value. Simi-

larly, for the static stress constraints Rq is written as

Rq(X,I9 =
(Yq(P'(u--(X),X) _X, Y)

(_aq (4-10)

where Oq is a measure of the elemental stress state (which is depen-

dent on the element cross section type) associated with the q-th

strength constraint and (Yaq is the allowable value.

In the case of the dynamic displacement and actuator force con-

straints, writing the response ratios directly in terms of the system

response quantities would lead to a time dependent constraint formula-

tion (see Eqs. (3-30) and (3-31)). However, since the steady state

dynamic response is harmonic in nature, this time dependent constraint

formulation can be replaced by a constraint on the magnitude of the

response (see Eq. (3-32)). This is equivalent to constraining the

response over the entire time interval of interest under the assumption

that the interval is greater than or equal to the natural period of the

response. Taking this approach the response ratios for a constraint on

a single dynamic displacement quantity is given by

eq(_O = . luq(Tt')l
Ua_ (4-11)

where [Uq(Tt')[ is the magnitude of the displacement quantity (see Eq.
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(3-32)) associated with the q-th dynamic displacement constraint and

Uaq is its allowable value. Similarly, the response ratio for a constraint

on a combination of dynamic displacements is

(4-12)

where JR(X) is given by Eq. (4-2) (with the weighting coefficients Qjk

chosen so that only the displacements of interest are included in the

constraint) and where JRu is the upper bound allowable value.

Making the same assumption with respect to the time period of

interest, the response ratio for a constraint on a single actuator force is

written as

Rq(_'-) = IFA,(U-(X),X)I
Fa, (4-13)

where IFA_(U-(X),X)I is the magnitude of the actuator force (see Eq. (3-

48) associated with the q-th constraint and Fa, is its allowable value.

Likewise, the response ratio for the control effort constraint is given

by

(4-14)

m

where Jc(X) is given by Eq. (4-5) and Jc_ is the allowable upper bound

value.

For the frequency constraints the response ratio is given by

either
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R q ( _Z) =

2m 2, - m2(TX-)

mqz (4-15)

when mq, is the lower bound allowable value for the frequency, or by

Rq (_r) = m2

when mq, is the upper bound allowable.

(4-16)

In both instances ¢.Oq(X)is the

natural frequency associated with the q-th constraint.

Finally, the response ratio for the system mass constraint is

eq(_t') = "'_ (4-17)

where M(_ is given by Eq. (4-1) and M u is its allowable upper bound

value.

4.4 Temporary Constraint Deletion

Proper design of a structural system usually requires the con-

sideration of a substantial number of possible failure modes since, in

general, the critical failure modes are not known at the outset of the

design process. As a result, the synthesis problem statement may con-

tain a large number of inequality constraints. In order to reduce the

number of constraints, and the associated computational burden, it is

possible to temporarily ignore certain constraints which are not

expected to currently participate in the design. In effect, this process

reduces the number of constraints by approximating the critical con-

straint set.
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The criteria by which particular constraints are judged to be par-

ticipating (active) or non-participating (passive) forms the basis of the

constraint deletion technique. Various criteria are conceivable, how-

ever a relatively simple but effective strategy consists of deleting all

constraints with response ratios (Rq) less than a specified constraint

truncation parameter CTP. The value of CTP may, in general, be

chosen separately for each constraint type and may change during the

design process. In this work, a single value for CTP is used for all

behavior constraints. The value of CTP is either set equal to a user

prescribed value or it is calculated automatically such that: 1) con-

straints with Rq _> .7 are always retained, 2) constraints with Rq < .3

are always deleted and 3) constraints with .3 _< Rq < .7 are retained or

deleted depending on the value of the response ratio cutoff parameter

R c. This criteria can be written as

CTP = min ( max{Rc,.3}, .7 )
(4-18)

where R c is the maximum response ratio rounded down to the nearest

tenth (e.g. if max Rq = .65 then R_ = .6). When CTP is prescribed by
q_Q

the user its value is held constant during the entire design process.

Otherwise, the value of CTP is updated for each approximate problem.

4.5 Objective Function and Constraint Approximations

A key element in the efficient solution of the structural synthesis

problem lies in the construction of accurate explicit objective and con-

straint function approximations. This is particularly true in the case of

the behavior constraint functions because, in general, exact evaluation
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of these constraints requires that the structural analysis problem be

solved. Various methods are available for the construction of these

approximations, with the most commonly used techniques requiring

only the first derivatives of the functions to be approximated (Refs. 60

and 67).

The most commonly used approximation consists of expanding

the function in a linear first order Taylor series of the form

b=l _Yb (Yb- Y°_') (4-19)

where the expansion variables Y are chosen so that the resulting

approximation is of the highest possible quality. In many cases, how-

ever, no single set of expansion variables may be chosen such that all

function approximations are sufficiently robust . In this case it has

been suggested (Ref. 68) that a hybrid or mixed variable approxima-

tion might be a useful alternative. This approximation can be con-

structed by the comparison of Eq. (4-19) with a first order Taylor

series expansion of the form

_f(Y-o) 1 1 1
b=l (4-20)

or, equivalently,

_f(Yo) 1

b=l

Subtracting Eq. (4-19) from Eq. (4-21) gives

111 ,421,
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 f(Yo) f(Yb- rof ]
b=l (4-22)

For the case where f(Y) represents an objective function to be minim-

ized or a constraint function of the form f(Y) < 0 Eq. (4-22) indicates

that fl is more conservative than fL when

1 _f(_-o)
<0

Yb _Yb (4-23)

or, if Yb represents some physical variable known to be positive in

sign, when

<0
bYb (4-24)

Consequently, comparison of f_ and 3_ on a term by term basis leads to

the following first order mixed variable approximation:

f(_fM(_)=f(YO) + ]_ Oy b Bbt,=l (4-25)

where

Bb =I (Yb - Yo) if i_rb >0

[  f(Yo)
Y_o_ (1/Yb) -- (1/Yo) if _Yb < 0 (4-26)

This mixed variable approximation 0_(_) is more conservative than

either the pure linear approximation (fL(Y), see Eq. (4-19)) or the pure

inverse approximation _/(_, see Eq. (4-20) or (4-21)). Numerical
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experience has shown this approximation to be quite robust, yielding

good results for a significant class of structural synthesis problems

(e.g. Refs. 61 and 69). In this work, the mixed variable approximation

defined by Eqs. (4-25) and (4-26) will be used for both the objective

function and constraint approximations.

Clearly, from Eq. (4-25), construction of the objective function

and constraint approximations requires the calculation of the partial

derivatives of the function which is to be approximated. For the gen-

eral case these derivatives can be written as

OYb = OYb j_._ dXj 3Y b x_, £o (4-27)

where Jb is the set of REP's associated with the b-th design variable.

The derivative off with respect to Xj is given by either

df
+

bun _ + ,'_, _// _ (4-28)._, _ _u. _i _Fi_xj

for the case where f is a function of the static response quantities,

Of ;91unl Of /)lFa, Idf = _f + Z _+ Z
Ogj aXj _]Un] OlFAi In_Ns _Xj i)Xj (4-29)i_Js

when f is a function of the dynamic response quantities or

dXj = m_ _(O2 _ (4-30)

when f is a function of the natural frequencies; where N.t., If, .If and M.f

are the sets of displacement degrees of freedom, element end forces,
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actuator forces and frequencies associated with the function f.

The displacement derivatives required in Eqs. (4-28) and (4-29)

can be computed in several ways (Ref. 70). In this work the partial

inverse form of the pseudo-load method (Ref. 60) is employed. The

eigenvalue derivatives needed in Eq. (4-30) are obtained via implicit

differentiation of Eq. (3-53). Detailed formulations for the displace-

ment, force and eigenvalue sensitivities, as implemented here, are

given in Appendix D.

4.6 Move Limits

While the objective function and constraint approximations

described previously are constructed to be of high quality, these

approximations do not, in general, accurately represent the true func-

tions over the entire design space. To ensure that the approximations

are accurate enough during the solution of each approximate design

problem a move limit strategy is employed. Specifically, side con-

straints are placed on the design variables to temporarily restrict the

design space to a region over which the approximating functions are

believed to be robust. These stepwise upper and lower bounds are cal-

culated using the designer supplied move limit parameter d m as fol-

lows:

Y_ = max[Y_,Y b - dmYb]

Y_ = min[YUb,Yb+ dmY b]

(4-31)

(4-32)

where Yb is the value of the b-th design variable at the beginning of
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each approximate problem step and where yV and Y_ are the original

side constraints on Yb (see Eq. (2-1)).
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CHAPTER V

Optimization

5.1 Introduction

By using the approximate problem generation techniques

described in Chapter IV it is possible to replace each of the implicit

nonlinear mathematical programming problems given by Eqs. (2-5),

(2-6) and (2-7) with a sequence of explicit approximate problems, each

having the form

min J(_
g

s._.hq(_<0 ; q_0

___g_<iW
(5-I)

where J and hq are hybrid approximations(seeEqs. (4-25)and (4-26))

of the objectivefunctionand constraintsand where _ and _ are the

stepwise upper and lower bounds on the design variables.Each of

these approximate problems isan explicit,separable,convex inequality

constrainedmathematicalprogramming problem. The solutionof these

problems isdiscussedinthe followingsection.

5.2 Design Optimization

The solution to the approximate design problem posed in Eq.

(5-1) can be obtained either by solving the problem directly (i.e., solv-

ing the primal problem) or by constructing and solving the associated

dual problem. The primal problem can be solved via any one of a
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number of well known nonlinear inequality constrained minimization

(Ref. 71-72) techniques. In this work, a modified feasible directions

method (Ref. 73), as implemented in the CONMIN program (Ref.

74), is used.

The dual of Eq. (5-1) is given by

max l(_)
X_>O

The dual function l(_) is defined as

I(_) = min L(Y--,_)

(5-2)

(5-3)

where the Lagmngian function is given by

L(Y,_,) = J(Y) + Z _q "hq

q_O.

and where Y-F is defined by

_-F = {y I _ _<7<_ _-t+}

Solving Eq. (5-2) for the optimal dual variables _*

optimal values for the primal variables 17" if the

problem has a unique solution (saddle point).

(5-4)

(5-5)
will yield the

dual maximization

It is well known that if the primal problem (Eq. (5-1)) is convex

program (i.e., J'(_ and hq(_; q_ Q are convex functions and Y-is con-

mined in a convex subset of En) and has at least one strictly feasible

solution (i.e., there exists some Y s.t. hq(Y)< O, qEQ.), then the dual

problem has a unique saddle point (if, _-*). If this saddle point can be

found then ff solves the primal problem (Ref. 75). Since the hybrid

approximations used in constructing Eq. (5-1) are convex (Ref. 69), it
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follows (under the assumption that a strictly feasible design exists) that

the solution to the approximate design problem can be obtained by

maximizing the dual function.

While the dual method described above is clearly applicable to

the solution of Eq. (5-1), the efficiency of such a solution scheme is an

important consideration. In general, maximization of the dual function

is complicated considerably by the imbedded Lagrangian minimization

problem represented by Eq. (5-3).

separable then the solvability of Eq.

the Lagrangian minimization can

However, if L(Y,)_) is additively

(5-2) is enhanced by the fact that

be performed as a sequence of

smaller minimization problems (Ref. 75). Furthermore, when this

separability is complete the minimization of L(Y,)_) simply consists of

solving a sequence of single variable minimization problems (Refs.

76-77). Since the hybrid approximations used to construct the primal

design problem are additively separable into functions of a single vari-

able, an efficient explicit mixed variable dual method can be devised

(Ref. 69).

Introducing the hybrid expressions for J and hq

Eqs. (4-25) and (4-26)) Eq. (5-1) can be rewritten as

; q_Q (see

49



mb
rain _ rubYb- _ _ Y2b+ J

7 m_,>0 rob<0 Yb

where

s.t. ___CbqY b - _'_ _b q Y_ot,'k-hq-<O ; q: 1,2,...Q
c_>o c_t<o

YL < Yb < YU ; b= 1,2,...B
(5-6)

(5-7)

Y =J(Y-o)- Z mbYOb + Z mb Yob
mb>O m_<O

(5-8)

(5-9)

f'tq = hq(Y-o) - ___ Cbq YOb + _-_ Cbq YOb

c_>0 ct_<0

The dual problem (Eq. (5-2)) may now be written as

max rain L(Y,_.)
_>o Y_Ye

where

(5-10)

(5-11)

mb

L(Y,_,) = Z mbYb- Z _ Y_Ob+ J +
mb>O reo,<O

Cbq ]
_-_ _q _-_ CbqYb- _' "_b y2 + _q

q¢ Q c_o c_r<o (5-12)

Interchanging the order of the double summation in the fourth and fifth
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terms, Eq. (5-12) can be rewritten as

L(Y,_,) = Z mbYb-
m_._2 n_,<0

_-. ___ _'q Cbq

c_>O q_ Q

Yb

Letting

£
c_<0

q_Q _'qCbq _b + q_Q _qflq + J

nb =-- mb Y_ob ; mb<O

(5-13)

C b = _._ _q Cbq ; C.bq>O
q_Q

D b ---_ _._ _,q Cbq Y2 b ; Cbq<O

qe Q (5-14)

and substituting into Eq. (5-13) yields

n b

L(Y,,_) = m__ rubY b + _<<0 _ +
Z CbYb+

c_>O

(5-15)

Recognizing that the last two terms of Eq. (5-15) are constant with

respect to Y and that the remaining terms are additively separable, the
_m

minimization of L(Y,_,) can be performed via B single variable minimi-

zations, i.e.:
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B

min L(K_) = E min Lb(Yb,_,)
(5-16)

where

Lb(Yb,-_ ) =

. Db

mbYb + CbYa + "_o ; mb>O

Ob

CbY b + _ ; mb=O

n b Db

""_b + CbYb + Y'-b ; mb<O (5-17)

The solution to the b-th single variable minimization, (temporarily

ignoring the side constraints on Yb), is given by

Yb

O b

m b + C b ; mb>O

Db

; mb=O

D b + n b
; mb<O

Cb
(5-18)

Taking the side constraints into consideration, the solution to the b-th

single variable minimization becomes (for Cb, D b > O)

_b if (_)2 _<_2 < (_u)2
Yb = Y_ if ix2 <_ ( )2

Y_ if tx2 > (yU)2

; for mb>O
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Yb if (_b)= < _b < (YbU)2
Yb = [} if _ < (_L)=

yU if _ > (pu)2

b if (_)Z < [52 < (_)Z
Yb = Y_ if [3_ < (_)z

yU if [32 > (_u)2

where

Ob

mb + C b

for mb=0

for mb<0

(5-19)

9 2 = Db + n b
Cb

O b

=

Note also the following special cases:

Yb =Y_ if mb_>O and Db=O

(5-20)

Yb=_ "g if mb <_O and Cb-'O

Y_<Yb<Yg if mb=Cb=Db=O
(5-21)

Finally, using Eqs. (5-19) - (5-21), the dual problem may be written as

an explicit problem in terms of _, that is

max l(Y(_.),_.)
x > 0 (5-22)

The dual problem given by Eq. (5-22) represents the quasi-

unconstrained maximization of a concave function and, as such, is
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solvable by various mathematical programming methods. Gradient

based techniques are particularly attractive in this case since the first

derivative of the dual function is immediately available from the pri-

mal constraint values (Ref. 75), i.e.:

_l(_) ="hq ; qEa
()_,q (5-23)

However, if l(_) does not possess continuous first derivatives these

methods may exhibit slow or nonconvergent behavior. The dual func-

tion can be shown to be continuously first order differentiable under

the following conditions: 1) Y is contained in a closed and bounded

subset (S) of E n, 2) J and hq ; q_ Q are continuous on S and 3) L(Y,_,)

is minimized over S at a unique point Y(_) for all _, > 0. From Eqs.

(5-18)-(5-21) it can be seen that these conditions are satisfied except

for the case when m b, C b and D b are all equal to zero. For the approx-

imate design problems given by Eqs. (2-9) and (2-10) (i.e., the

response minimization and control force minimization problems) it can

be argued that the coefficients m b will always be nonzero. Therefore,

in these two cases a gradient based mathematical programming method

can be used to solve the dual problem. In this work the dual problem

is solved in the full dual variable space using the feasible directions

method discussed previously. The dimensionality of the dual space is

equal to the number of retained constraints. Therefore, solving the

dual is generally more efficient than solving the primal if the number

of retained constraints is less than the number of primal design vari-

ables.
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CHAPTER VI

Numerical Results

6.1 Introduction

The control augmented structural synthesis methodology

described in the preceding chapters has been implemented in a

research computer program which is operational on the IBM 3090

computer at UCLA. This program has been used to generate numeri-

cal results for various example problems. These problems were

selected so that, in addition to demonstrating the basic features of the

design methodology, the results could be critically evaluated through

insights into the physical behavior of the system.

6.2 Problem I - Cantilevered Beam, Mass Minimization

The first example problem is that of finding the minimum mass

design of the cantilevered beam shown in Fig. 3. The beam is

modeled with ten beam type finite elements (see Appendix A) each 1.0

m in length. The motion of the beam is constrained such that only

vertical displacements and in-plane rotations are allowed. A concen-

trated mass (200 kg) is located at the midspan node and a vertical har-

monic load (Pl(t) -- 4000 Nt sin (3.9 Hz)t) is applied at the tip. Two

percent structural damping (_, = .02) is assumed. The design variables

for this problem are the web and flange thickness (th, tb) of the beam

elements and the position and velocity feedback gains (hp,hv) of the

control elements.
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6.2.1 Case A - Uniform Structural Design

Two cases were studied for this problem. In the first case (Case

A) the web and flange thickness variables are linked along the entire

length of the beam. The initial values of these variables was taken to

be 5.0 cm with side constraints imposed so that .5 cm < th, tb < 10.0

cm.

Three runs were made for Case A. In each run the magnitude

of the vertical dynamic tip displacement is constrained to be less than

10.0 cm and the first undamped natural frequency must be greater than

4.0 Hz. Stepwise move limits of 30% (dm = .3) were imposed on the

design variables. In the first run (uncontrolled) there are no active

control devices in the system. For the second run actuator #1 is added

to the system and in final run actuators 1 and 2 are included. The ini-

tial values of the feedback gains are hp = 20.0 Nt/cm and h v = 5.0 Nt-

sec/cm. Lower bound side constraints on the feedback gains (hp > .05

Nt/cm, hv > .05 Nt-sec/cm) ensure that the final designs will be

dynamically stable (Ref. 18). The magnitude of each actuator force is

constrained to be less than 20% of the external loading (800 Nt) and

the total control force must be less than 35% of the loading (1400 Nt).

The iteration history data, final designs and final design response

ratios for all three runs of Case A are given in Tables 1-3. The itera-

tion history plots are shown in Fig. 4. In all three runs the tip dis-

placement constraint is critical for the final design. The outboard

actuator constraint is also critical for both of the controlled runs and

the total control force constraint is critical in the final run. It is
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interesting to note that when two actuators are included in the system

the outboard actuator is favored in the final design. This is not unex-

pected since, for this problem, the undamped natural frequencies are

all greater than the forcing function frequency and, therefore, the

dynamic response is dominated by first mode behavior.

For all three runs the structural designs are changed from an ini-

tial uniform thickness distribution to the intuitively satisfying final

designs in which the web thickness (th) takes on its minimum gage

value. Also, the actuator position gains (hp) consistently dominate the

velocity gains (hv) for the final designs. This is primarily due to the

fact that the undamped natural frequencies are well above the forcing

function frequency resulting in the stiffness augmentation being rela-

tively more effective (as compared to the damping augmentation) in

reducing the steady state response.

Examination of the objective function values for the final

designs shows a large improvement over the initial infeasible designs

for all runs. Also, moderate (13-20%) improvements in the final

design mass are obtained as a result of the addition of active control.

6.2.2 Case B - Non-uniform Structural Design

The problem definition for Case B is identical to that of Case A

except that the thickness design variables are allowed to vary along the

length of the structure. The beam element thickness is linked pairwise

along the length of the beam resulting in ten independent structural

design variables.
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Again, three runs were made; uncontrolled, controlled with one

actuator and controlled with two actuators. Stepwise move limits of

30% were imposed on the design variables during the solution process.

The iteration history data, final designs and final design response ratios

are given in Tables 4-6. The iteration history plots are shown in Fig.

5. As in Case A, the tip displacement constraint is critical in the final

design for all three runs. The outboard actuator constraint is also criti-

cal in both of the controlled runs. The total control force constraint is

critical in the final run with the outboard actuator being favored over

the inboard actuator.

From Table 5 one can observe that, as in Case A, the web

thicknesses are at minimum gage in all final designs. However in this

case the flange thicknesses taper along the length of the structure from

a maximum value at the root to minimum gage at the tip. This tapered

design is to be expected when the response is dominated by first mode

behavior. Also note that the velocity gains are, once again, dominated

by the position gains.

Examination of the objective function values for the final

designs shows a large improvement over the initial infeasible designs

for all runs. Small (6-9%) improvements in the final design mass are

obtained as the actuators are added to the system. Finally, it should be

noted that the final design objective function value for the uncontrolled

run in this case is less than the two actuator run for Case A. This

observation underscores the importance of utilizing any available struc-

tural design freedom as a means of achieving overall design goals.

58



6.3 Problem 2 - Cantilevered Beam, Response Minimization

In the second example the design goal is to minimize the

dynamic tip displacement of the cantilevered beam shown in Fig. 3.

The loading condition, design variables, initial design, behavior con-

straints, and side constraints are the same as those for Problem 1. In

addition an upper bound constraint of 1000 kg is imposed on the struc-

tural mass.

6.3.1 Case A - Uniform Structural Design

Again, two cases were studied for this problem. In the first case

the web and flange thicknesses are linked along the entire length of the

beam. Three runs were made for Case A with stepwise move limits of

40% imposed on the design variables. The iteration history data, final

designs and final design response ratios are given in Tables 7-9. The

iteration history plots are shown in Fig. 6. The structural mass con-

straint is critical for all final designs and the outboard actuator con-

straint is critical for both controlled runs. For the final run the total

control force constraint is also critical, with the outboard actuator

being favored over the inboard actuator due to its greater effectiveness

in controlling the tip response.

It is interesting to observe that the final structural designs are

virtually identical for all three runs. This is intuitively satisfying since

it is expected that the limited amount of structural material would exhi-

bit a unique optimal distribution. As in Problem 1, the contributions

to the actuator forces due to velocity feedback are small compared to
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that due to the position feedback. Again this is due to the relative

ineffectiveness of damping augmentation away from a resonance con-

dition.

Finally, examination of the final design objective function values

show a large improvement over the initial infeasible designs for all

runs. Also, significant improvements (18-29%) in the final design tip

displacement values are realized with the addition of active control.

6.3.2 Case B - Non-uniform Structural Design

Case B, for this problem, is identical to Case A except that the

thickness design variables are allowed to vary along the length of the

beam. The element thicknesses are linked pairwise along the length of

the beam resulting in ten independent structural design variables.

Three runs were made with stepwise move limits of 40% imposed on

the design variables. In this case each approximate problem was

solved in its dual form since the number of primal design variables is

significantly greater than the average number of retained constraints.

The iteration history data, final designs and final design response

ratios for all three runs are given in Tables 10-12. The iteration his-

tory plots are shown in Fig. 7. As in Case A, the structural mass con-

straint is critical in all three runs and the outboard actuator force con-

straint is critical for both controlled runs. The total control force con-

straint is also critical in the final run.
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All three final designs have virtually identical material distribu-

tions with the flange thicknesses at minimum gage and the web

thicknesses tapering from a maximum value at the root to minimum

gage at the tip. Again, the actuator forces are dominated by the contri-

bution due to the position gains.

The final design objective function values for all three runs are

greatly improved over the initial infeasible designs. Also, the final

design objective function value is significantly reduced (20-30%) with

the addition of the active control devices. Finally, it should be noted

that, as in Problem 1, the final objective function value for the uncon-

trolled run of Case B is less than the two actuator run of Case A.

6.4 Problem 3 - Cantilevered Beam, Control Force Minimization

In this example the design goal is to minimize the total control

force for the control augmented cantilevered beam shown in Fig. 3.

The loading condition, design variables, side constraints and frequency

constraint are the same as in Problem 1. The magnitudes of the actua-

tor forces are constrained to be less than 4000 Nt and the structural

mass must be less than 400 kg.

Two cases were considered for this problem. Three runs were

made for each case. In the first run only actuator #1 is included in the

system. Only actuator #2 is included in the second while in the final

run both actuators are included.
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6.4.1 Case A - Uniform Structural Design

In Case A the web and flange thicknesses are linked along the

length of the structure. The initial designs are given by th = tb = 2.5

cm, hp = 20.0 Nt/cm and h v = 5.0 Nt-sec/cm. The magnitude of the

tip displacement is constrained to be less than 5.0 cm and 40% move

limits are imposed on the design variables.

The iteration history data, final designs and final design response

ratios are given in Tables 13-15. The iteration history plots are shown

in Fig. 8. The structural mass and tip displacement constraints are

critical for all three final designs. The actuator force constraint is

nearly critical in Run 2, indicating that the feasible region in this case

is relatively small.

Comparison of the final design objective function values under-

scores the importance of proper selection of the actuator location.

Clearly, when the actuator is placed at the inboard position (Run 2)

rather than at the tip (Run 1), the required control force is significantly

greater (38.1%). This is due to the fact that the first structural mode is

more readily controlled at the outboard position. In the final run,

where both actuators are included, the inboard actuator tends to "van-

ish" in favor of the outboard actuator yielding a final objective func-

tion value that is within 1.2% of that of Run 1.

Finally, it should be noted that the final structural designs are

nearly identical for all three runs. Again, as in Problem 2, this is an

indication of an essentially unique material distribution given a limited
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amount of material for the problem.

6.4.2 Case B - Non-uniform Structural Design

In Case B the web and flange thicknesses are linked pairwise

along the length of the beam. The initial designs for Runs 1 and 3 are

given by tb = 2.0 cm, th = .75 cm, hp = 50.0 Nt/cm and h v = 5.0 Nt-

sec/cm. For the second run the initial design was tb = 2.0 cm, th = .75

cm, hp = 100.0 Nt/cm and hv = 7.5 Nt-sec/cm. The magnitude of the

tip displacement is constrained to be less than 4.0 cm and 40% move

limits are imposed on the design variables.

The iteration history data, final designs and final design response

ratios are given in Tables 16-18. The iteration history plots are shown

in Fig. 9. The structural mass and tip displacement constraints are

critical for all three final designs. As in Case A positioning the actua-

tor at the outboard location results in significantly reduced control

effort (49.9%). Also, in the final run the inboard actuator tends to

"vanish", although in this case the objective function value is approxi-

mately 6.9% greater than that of Run 1. However, a subsequent run

with tighter convergence criterion resulted in a difference of less than

1.7%

6.5 Problem 4 - Cantilevered Beam, Multiple Loading Conditions

This problem is the same as Problem 1, Case B except that three

independent loading conditions are considered. The three loading con-

ditions are given by Pl(t) - 4000 Nt sin (3.9 Hz)t, P2(t) = 4000 Nt sin

(5.0 Hz)t and P3 = 4000 Nt, M 3 - 2.0 x 105 Nt-cm, respectively.
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Note that the third loading condition is a static loading condition (see

Fig. 3). In addition to the constraints imposed in Problem 1, the static

tip rotation is constrained to be less than .00796 rad and the lowest

undamped natural frequency must lie between 4.0 Hz and 4.9 Hz.

Three runs were made for this problem using stepwise move

limits of 30%. The iteration history data, final designs and final design

response ratios are given in Tables 19-21. The iteration history plots

are shown in Fig. 10. The dynamic tip displacement constraints (under

both loading conditions) and upper bound frequency constraints are

either critical or near critical for all three final designs. In addition,

the outboard actuator force constraint (under loading condition #1) is

critical in the second run and, in the final run, the static rotation con-

straint and both actuator force constraints (under loading condition #1)

are critical.

For this problem several interesting observations can be made

from the final design data. First, for the uncontrolled run the final

structural material distribution exhibits characteristics typical of a

vibration absorber. Specifically, while the flange thickness distribution

initially tapers from the root towards the tip it increases again for the

outboard elements (see Fig. 11). Also, the web thickness is

significantly greater than its lower bound value near the tip. Both of

these conditions combine to simulate a sprung non-structural mass near

the tip of the beam. This behavior is also seen, to a lesser degree, in

the final design for Run 2. The existence of the vibration absorber

characteristics in these designs results from the upper bound on the
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undamped natural frequency which prohibits the purely tapered designs

achieved in Problem 1.

It is also interesting to note that the contribution to the actuator

forces due to velocity feedback is more significant for this problem

than it was for Problem 1. This is due to the fact that the first natural

frequencies for the final structural designs are near the 5.0 Hz forcing

function frequency of load condition 2. As a result the effectiveness

of the damping augmentation in controlling the steady state response is

increased.

The addition of the inboard actuator in the third run resulted in

satisfaction of the dynamic displacement constraints without resorting

to the vibration absorber type of design. In this case the structural

stiffness was allowed to decrease enough to cause the static tip rotation

constraint to become critical.

Finally, examination of the final design objective function values

shows a significant decrease (16-49%) in the structural mass with the

introduction of active control.

6.6 Problem $ - Cantilevered Beam, Lumped Mass Design Ele-

ments

The problem statement for this example is the same as that for

Problem 4 except that two lumped non-structural mass design variables

are included in addition to the structural and control variables con-

sidered previously. One lumped mass is located at each end of ele-

ment #10. The design goal is to minimize the total system mass
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(structural plus non-structural

imposed in Problem 4.

mass) subject to the same constraints

Three runs were made; uncontrolled, controlled with one actua-

tor and controlled with two actuators. The initial values for the

lumped masses are given by m = 5.0 kg, lower bound side constraints

imposed such that m >_ .1 kg. Stepwise move limits of 30% were

imposed on the design variables.

The iteration history data, final designs and final design response

ratios are given in Tables 22-24. The iteration history plots are shown

in Fig. 12. The dynamic tip displacement constraints (under both load-

ing conditions) and upper bound frequency constraints are either criti-

cal or near critical for all three final designs. The outboard actuator

force constraint (under loading condition #1) is also critical in the

second run. The static rotation constraint and the force in actuator 1

(under loading conditions 1 and 2) are critical in the final run.

It is interesting to note that for Runs 1 and 2 the inclusion of the

lumped mass design variables resulted in overall mass reductions as

compared to Runs 1 and 2 for Problem 4. Specifically, in Run 1 the

addition of 9.37 kg of non-structural mass resulted in a reduction of

4.28 kg in total system mass. In Run 2 the system mass was reduced

by 9.10 kg when 6.73 kg of non-structural mass was added. This

should not be too surprising given the nature of the final designs.

Apparently, a more efficient vibration absorber design was realizable

with the addition of the lumped masses since the absorber stiffness and

mass are not completely coupled as before. The changes in the
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structural material distribution can be seen by comparing Fig.

Fig. 11.

13 with

In the final run the addition of the lumped mass design variables

resulted in a final design objective function value which is slightly

greater than that obtained without the lumped masses. In this case the

final design is driven by the static tip rotation constraint and does not

exhibit the characteristics of a vibration absorber. Therefore, the

lumped masses would not be expected to improve the design. A sub-

sequent run with tighter convergence tolerance gave a final system

mass value which was very close to that obtained in Problem 4, Run

3.

6.7 Problem 6 - Cantilevered Beam, Independent Actuator Gains

Problem 6 is the same as Problem 4 except that in this case the

actuator gain design variables are determined independently for each

dynamic loading condition. It is assumed here that the service

environment under which the system must operate is either known or

can be detected and that the system experiences either dynamic loading

condition #1 or #2, but not both simultaneously. The structural fre-

quency and static displacement constraints are imposed regardless of

the dynamic loading. In this way the structure is designed for all

operating conditions simultaneously while the system as a whole is

optimally adaptable to the service environment by switching between

appropriate sets of optimal actuator gains.
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Two runs were made for this problem. In the first run only the

outboard actuator is included in the system. Both actuators are

included in the second run. Stepwise move limits of 30% are imposed

on the design variables for both cases. The iteration history data, final

designs and final design response ratios are given in Tables 25-27.

The iteration history plots are shown in Fig. 14. The dynamic tip dis-

placement constraint (under loading condition #1) and the upper bound

frequency constraint are critical for both runs. The outboard actuator

force constraint (under loading condition #1) is critical in Run 1 while

the static tip rotation constraint and both actuator force constraints

(under loading condition #1) are critical in the final run.

Several interesting observations can be made here. First, the

actuator gains corresponding to loading condition #2 do not change

from the initial design values. This is due to the fact that the tip dis-

placement constraint for loading condition #2 is so far from its upper

bound value that it is never retained in the approximate design prob-

lem. The absence of this constraint as a design driver suggests that

active control devices are not required when the system is subjected

only to loading condition #2. By removing the actuator from the sys-

tem for this loading condition and obtaining the same final structural

design the foregoing conjecture was verified. It was also observed that

the dynamic tip displacement was reduced indicating that the addition

of active control actually adversely affects the tip displacement for

loading condition #2. This can be attributed to the fact that the initial

actuator gains used in this example increase the effective stiffness of

the system, moving the design closer to resonance.
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The previous observations are consistent with the fact that the

final design mass for Run 1 is 16% less than that obtained when one

set of actuator gains are used for both dynamic loading conditions. By

allowing the actuator gains for the first loading condition to change

independently of those for the second loading condition the stiffness

augmentation is increased thereby pushing the closed loop frequencies

away from the forcing function frequency of loading condition #1

without adversely affecting the response associated with the second

loading condition.

Finally, it should be noted that allowing independent actuator

gains does not appreciably change the final design objective function

value for the second run. This is not unexpected since the structural

design tends to be driven by the static tip rotation constraint. How-

ever, even though the final structural design is not much different than

that obtained in Problem 4, Run 3 the control system design and active

constraint set differs significantly.

6.8 Problem 7 - Planar Truss, Control Force Minimization

The design goal in this example is to minimize the total control

force for the control augmented planar truss structure shown in Fig.

15. This structure has previously been used to study the interaction of

active and passive control techniques in Ref. 48. The system consists

of an assemblage of ten truss elements (see Appendix A) and four

active control elements. The motion of the structure is constrained so

that only horizontal and vertical displacements are allowed. The truss

members are made of aluminum with E --- 10.0 x 106 psi and 9 = .1
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lb/in 3, and the actuators act in the y-direction only. In addition, a sin-

gle concentrated non-structural mass (1.29 lb-sec/in) is placed at each

of nodes 1-4 to represent the mass of the actuators and sensors. Two

percent structural damping is assumed.

Two loading conditions are considered for this problem. Load-

ing condition #1 consists of a two dynamics loads acting in the vertical

direction at nodes 3 and 4. The form of each load is given by Pl(t) =

500 lb sin (3.0 Hz)t. The second loading condition consists of a static

load P2 -- 500 lb acting in the negative y direction at node numbers 1-

4.

Three cases are considered for this problem. In the first case

(Case I) the structural design is fixed with the area of each truss given

by A = .1 in. The design variables are the position and velocity gains

for the four actuators. The initial values of the gains are given by hp =

10.0 lb/in and hv = 10.0 lb-sec/in. Side constraints limit the gains so

that hp > .05 lb/in and h v > .05 lb-sec/in. The magnitudes of the verti-

cal dynamic displacements are constrained to be less than .5 in and the

force output of each actuator is limited to 200.0 lb.

In the second case (Case II) both the truss areas and actuator

gains are allowed to vary. The initial structural design is uniform with

A = 1.0 in and upper and lower bound side constraints of 1.0 in and

.01 in are imposed. The initial values and lower bounds for the posi-

tion and velocity gains are the same as in Case I. In addition to the

dynamic displacement and actuator force constraints described previ-

ously the following constraints are imposed for this case: 1) the
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structural mass must be less than or equal to that of the original struc-

ture (4.88 lb), 2) the first mode frequency must be greater than the

forcing function frequency (3.0 Hz) but less than the first mode fre-

quency of the original structure (3.44 Hz) and 3) the axial stress in any

truss member must not exceed 20.0 ksi. Case III is identical to Case

II except that the allowable stress is increased to 22.0 ksi.

The iteration history data and final designs for all three cases are

given in Tables 28 and 29. The iteration history plots are shown in

Fig. 16. The dynamic displacement constraints at nodes 2 and 4 are

critical in the final designs for all three cases. The upper bound fre-

quency and structural mass constraints are critical in Cases II and III.

In Case II the stress constraints for truss members 1,3,4,6,7, and 8 are

critical while members 1,3,7 and 8 are stress critical in Case III.

The important observation here concerns how the

material distribution effects the control force required to

dynamic displacement constraints imposed on the problem.

structural

meet the

It should

be noted that the structural mass and first mode undamped natural fre-

quency are the same in all three cases. However, as Table 29 shows,

the material distributions are significantly different. In Case II allow-

ing the structural design to change resulted in a 61.5% reduction in

total control force over Case I, even with the addition of the stress

constraints. An additional 13.4% reduction was obtained by relaxing

the stress constraint by 10%. Clearly, changes in the structural design

(in terms of both material distribution and selection) can significantly

effect active control system requirements.
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6.9 Problem 8 - Antenna, Response Minimization

In Problem 8 the antenna structure shown in Fig. 17 is to be

designed so that the magnitudes of the vertical dynamic displacements

are minimized. The structure consists of an assemblage of eight

aluminum beams (E -- 7.3 x 106 Nt/cm, _ -- .325, p = 2.77 x 10 -3

kg/cm) each having a rectangular cross section (see Fig. 18). Two

percent structural damping is assumed. Actuators, located at the

comer nodes (2,4,5 and 7), act in the vertical direction. The structure

is subjected to two independent dynamic loading conditions. In each

loading condition a single harmonic force is applied to member #4 at a

distance of 10.0 cm from the centerline of the structure causing excita-

tion of both symmetric and anti-symmetric modes. The forces are

given by P(t) -- 100 Nt sin (co)t, where co -- 5.0 Hz for the first loading

condition and co = 10.0 Hz for the second loading condition. In addi-

tion to the dynamic loads the structure is also subjected to a uniformly

distributed static loading of 1.5 Nt/cm along the length of each beam

member, acting in the negative y direction.

Two cases were considered for this problem. In the first case

(uncontrolled) the actuators are removed from the system and the

thicknesses, widths and heights of the structural members are designed

to minimize the sum of the magnitudes of the vertical dynamic dis-

placements at nodes 2,4,5 and 7 (summed over the two dynamic load-

ing conditions). Linking is employed to force the final design to be

symmetric with respect to the x-y plane leaving 15 independent design

variables. The initial design is uniform (t = .5 cm, b = h = 20.0 cm)
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with side constraints imposed so that .1 cm < t < 1.0 cm and 10.0 cm

<_b,h < 25.0 cm. Move limits of 10% were imposed during the design

process. In addition to the side constraints the following behavior con-

straints are also included: 1) the fourth mode frequency must be

greater than or equal to 8.0 Hz, 2) the fifth mode frequency must be

greater than or equal to 9.25 Hz, 3) the Von-Mises static stress (as

evaluated at the points shown in Fig. 18) at both ends of each beam

member must not be greater than 2.0 x 104 Nt/cm 2 and 4) the total

structural mass must be less than or equal to 700.0 kg.

The second case (controlled) is identical to the first except that

control elements at the comer nodes are included. In this case the

beam cross sectional dimensions (CSD's) and the actuator position and

velocity gains are varied. As in Problem 6, the gains are determined

independently for each loading condition, so that there are a total of 31

design variables for the problem (15 CSD's plus 16 gains). The initial

structural design, side constraints and move limits are the same as

those used for the controlled case. The initial actuator gains are given

by hp = 100.0 Nt/cm and hv - 10.0 Nt-sec/cm with side constraints

imposed so that hp > .05 Nt/cm and hv >- .05 Nt-sec/cm. In addition to

the constraints imposed previously, each actuator force output is lim-

ited to a maximum of 15.0 Nt in this case.

The iteration history data and final structural designs for both

cases are given in Tables 30 and 31. The iteration history plots are

shown in Fig. 19. In both cases the critical constraints include 1) the

lower bound frequency constraints on the fourth and fifth modes, 2)
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the static stress constraint for member #1 (at the fixed end) and 3) the

structural mass constraint. The objective function value is significantly

improved over that of the initial infeasible design as a result of both

the addition and redistribution of structural material. The addition of

active control resulted in a further reduction of 40.9% as compared to

the uncontrolled case.

The complexity of the structure and the modes participating in

the response does not allow for a simple interpretation of the final

designs in this case. However, it is interesting to note that even

though the structural design is forced to be symmetric via linking, the

final actuator forces are not (see Table 32). This is to be expected

since, as mentioned previously, the point of application of the external

dynamic force causes both the symmetric and anti-symmetric modes to

be excited, leading to a non-symmetric response.

6.10 Problem 9 - Grillage

The final example problem involves the design of the 8 by 11

planar grillage shown in Fig. 20. The grillage, similar to the one

described in Ref. 78, consists of a lattice of 19 aluminum frame

members (p = .1 lb/in, E - 10.5 x 106 psi, v - .3) placed on one foot

centers and cantilevered from two fixed supports by 20 inch long flexi-

ble beams. Each solid rectangular member is 2.0 in wide and has an

initial thickness of .25 in. The members are oriented so that the width

dimension lies in the plane of the structure. The grillage is augmented

with 24 active control elements, uniformly distributed over the grillage,

acting in the z direction. The mass of each actuator (1.296 x 10 -3 lb-
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sec2/in) is modeled as fixed non-structural mass. The grillage is sub-

jected to a dynamic loading (P(t) -- 16.9 lb sin(2.0 Hz)t) applied at

node 6 in the z direction. Two percent structural damping is assumed.

Two runs were made for this problem. In the first run (control

force minimization) the design goal is to minimize the total control

force subject to upper bound constraints of 1.0 in on the magnitudes of

the out-of-plane dynamic displacements at the four corners of the gril-

lage. The design variables are the control element position and velo-

city feedback gains which are initially set to hp = .1 lb/in and h v = .25

lb-sec/in for all actuators. Lower bounds are imposed on the gains so

that hp > .001 lb/in and h v > .001 lb-sec/in. The design variables

associated with each actuator are linked with those of the actuator

located at its symmetric (relative to the y-z plane) grid point (see Fig.

20) resulting in 24 independent design variables. Actuator force con-

straints are also employed to limit each actuator output to a maximum

of 2.0 lb. Note that the structural design is fixed (w = 2.0 in, t = .25

in) for this run.

In the second run (weight minimization) the design goal is to

minimize the structural weight of the grillage. In this case both the

actuator gains and the structural member thicknesses are included as

design variables. The initial values and lower bounds for the gains are

the same as in Run 1. The member thicknesses are initially .25 in,

with side constraints imposed so that .1 in < t < .5 in. In addition to

the dynamic displacement and actuator force constraints, an upper

bound constraint is imposed on the total control force for this run.
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The upper bound value was chosen to be equal to the final design

value of the total control force for Run 1 (3.61 lb).

Iteration history data as well as initial and final design actuator

forces for these runs are given in Tables 33 and 34. The iteration his-

tory plots are shown in Fig. 21. A significant reduction (60%) in the

total force was realized in Run 1 by redistributing the actuator forces

to more efficiently control the second and third structural modes.

For the second run, all of the structural members achieve the

lower bound thickness value (.1 in) except for members 2,8,11 and 17.

The final thickness values for these members are t2 = .2993 in, t8 =

.2284 in, and tll -- t17 = .3959 in. It should be noted that, although

symmetry of the actuator gains was enforced through design variable

linking, the expected structural symmetry in the final structural design

was obtained without without linking. Also, the thickness of the main

load carrying members (11 and 17) has increased by 58%. Finally, a

58.9% reduction in the structural weight was obtained with no increase

in the total control force over that of Run 1.
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CHAPTER VII

Conclusions and Recommendations

7.1 Conclusions

A synthesis methodology for the design of control augmented

structures modeled as assemblages of frame and/or truss elements has

been presented. The control system is modeled with specialized active

control elements designed to represent collocated actuator-sensor pairs

employing a direct output feedback scheme. It is assumed that the

behavior of both the structure and the active control system is linear.

Multiple static and steady state dynamic loading conditions are con-

sidered simultaneously.

The design problem is posed as a general nonlinear program-

ming problem in which the structural sizing variables, non-structural

lumped masses and control system feedback gains are treated simul-

taneously as design variables. The objective function can be chosen to

be either total system mass, total active control force or a measure of

the system dynamic response. Constraints on static displacements and

stresses, natural frequencies, dynamic displacements, actuator forces,

total control force, and total system mass are considered. Side con-

straints on the design variables are included to prevent the generation

of unrealizable structural designs and to maintain dynamic stability.

The general design problem is solved through the iterative con-

struction and solution of a sequence of explicit approximate problems.
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Each approximate problem is generated through the application of a

variety of approximation concepts and then solved using a feasible

directions algorithm.

The methodology summarized above has been implemented in a

research computer program and has been used to solve a number of

illustrative example problems. These problems serve to demonstrate

the viability of the proposed design technique. Near optimal designs

can typically be obtained within 10-15 design iterations. It is expected

that improvements in both the constraint and objective function

approximations would lead to even faster convergence.

In addition to validating the proposed design methodology, the

numerical examples presented in this work serve to underscore the

importance of integrating the structural and control system design

processes. Clearly, the extent to which the structural and/or control

system design can be improved by an integrated design process is

problem dependent. However, it is demonstrated here that the best

designs are consistently obtained when the structure and control system

are designed simultaneously. It has been shown that both structural

mass and system response can be effectively reduced through the addi-

tion of active control devices (see Problems 1,2,4,5,6 and 8). It was

also observed that even more significant reductions in active control

force can be realized through optimal structural modifications (see

Problems 3,7 and 9).
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Typically, the addition of active control was most effective when

the structural design freedom was limited, as was the case when struc-

tural design variable linking was employed (see Problems 1-3). The

control system tended to manifest itself as stiffness augmentation when

the structural frequencies were well separated from the forcing func-

tion frequencies while damping augmentation was more important near

resonance (see Problem 4). The proper selection of the number and

location of the actuators was, as expected, observed to be essential to

the control system's effectiveness (see Problem 3).

It was observed that constraints on static response (displace-

ments and stress) can significantly affect both the control system and

the structural design by limiting the redistribution of material in the

structure (see Problem 4,7 and 8). Proper structural material selection

(e.g. modifying the allowable stress) can also lead to improved control

system designs (see Problem 7).

Finally, as was shown in Problems 6 and 8, by allowing the

actuator gains to be determined independently for each dynamic load-

ing condition, the system can be designed to be adaptable to changes

in its service environment. In this case, the structure is designed for

all loading conditions simultaneously while the control system can be

tuned to the service environment by switching between appropriate sets

of optimal actuator gains.
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7.2 Recommendations for Future Work

The synthesis methodology presented in this work can be used

to design a significant class of control augmented structural systems.

While this work represents an important step towards the practical

integration of the structural and control system design processes,

several areas of future investigation can be identified which will lead

to increases in efficiency of the design process and/or broaden its

applicability.

Within the context of the current capability several possibilities

exist for improving solution efficiency. Since the majority of the

expense for each design iteration lies in the solution of the governing

equations, reducing the number of design iterations will lead to

significant reductions in total solution time. The key to fewer design

iterations is the construction of more robust approximate problems.

One possible way to improve the accuracy of the approximate problem

is to replace the current constraint and objective function approxima-

tions with a scheme whereby only the implicit quantities appearing in

these functions are approximated, with the remaining explicit non-

linearity being retained in the approximate problem.

In addition to reducing the number of analyses required in the

design process, efficiencies can be gained by reducing the expense of

each individual analysis. Two possible techniques for reducing the

analysis cost are 1) to devise a reduced order analysis method based

on pre and post multiplication of the steady state response equations

by a subset of the undamped normal modes of the structure and 2) to
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implement the solution scheme outlined in Appendix C for either the

full or reduced order system.

In order to extend the methodology to a broader class of prob-

lems it will be important to consider more general control system

models. Non-collocated actuator-sensor pair models could be imple-

mented directly into the current capability for the case where sym-

metric feedback was used. Non-symmetric feedback would destroy the

symmetry of the equations governing the steady state response and

thus would require the implementation of an appropriate equation

solver. The consideration of other forms of feedback (other than direct

output feedback) may require that an alternative method be used to

solve for the dynamic response. However, it should be emphasized

that any appropriate analysis method can be incorporated into the

design methodology.

Other areas of investigation which will be important for the

solution of practical problems include 1) investigating the feasibility of

directly constraining dynamic stability via constraints on the real parts

of the closed loop eigenvalues, 2) the implementation of dynamic

stress constraints and 3) the consideration of loading conditions com-

posed of forces having different forcing function frequencies.
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APPENDIX A

Stiffness Matrices, Mass Matrices and Load Vectors

for Structural Elements

A.1 Prismatic Frame Element

The space frame element, shown in Fig. A1, is a two node,

twelve degree of freedom element oriented with the longitudinal axis

in the local x coordinate direction and the cross section principal axes

in the local y and z coordinate directions. The element is assumed to

have linear axial and torsional displacement states given by

u(x) = [NI(xl,N2(x)] { u 1 }u2 (A-I)

0_(x)= [N,(x)_V2(_)]/ 0_,}/% (A-2)

and cubic bending displacement states of the form

Oz2

(h-3)

and
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w(x) - [N3(x),-N4(x),Ns(x),-N6(x)]{ 0Y,w2Wl}
0y2

(A-4)

where u, v and w are the displacements in the local x, y and z coordi-

nate directions, 0., 0y and 0z are the rotations about the x,y and z axes

and where the displacement shape functions are given by

Nl(X) = 1 - x
L

X
N2(x) = --

L

N3(x) = 1 - 3(L)2 + 2(L )3

N4(x) = L[(L) - 2(L)2 + (L)3]

(A-5)

Ns(x) = 3(L)2 - 2(L)3

N6(x) =L[-(-_--)2+(_-) 3]

The assumed displacement states (Eqs. (A-l) - (A-4)) lead to the fol-

lowing strain-displacement relations

Axialstrain:_U{}

= [B1] ul

u2
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Torsional strain:
--_-x= [BI] [% /

[ox2! (A-6)

Cu_amre:
_2v

0z 2

_)2w

0y2

where

[11]IBm]= Z' L

6 _),[B2I = [- -Zi- (1- -

6 __),[831= [-25- (1-

2(2__.._),_ 6 2x_ _2(1 --_-(--£- 1), --_-)]

2 3x _ 6 2x 2(1 -T (2-T), 2T (T-1), --_)]

(A-7)

The total strain and kinetic energies for the frame element can now be

written as
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and

where

P

E

G

A

J

i,

&

and

L
U= EA !{_u _xx -_-"T- _x It{ tdx +

O

EIz i o_2v T - O_2v- • Ely
0

1

= -_ {q}T[K]_tq}

bx }dx+

" _u _ _u PI"i _t _o,
T= PA2 ! (-_-} (-_t't}dx + -2-o ( }r ("_t-'t}dx

0 0

= _I {#}T[Me]{q }
2

+

mass density

material modulus of elasticity

material shear modulus

cross sectional area

torsional constant

cross sectional principal moment of
inertia about the y axis

cross sectional principal moment of
inertia about the z axm

polar moment of inertia

(A-8)

(A-9)
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{q}T = {u 1 Vl Wl Oxt Oy10z _ u2 v2 w20x 20y 2 0z2}

Note that the rotational kinetic energy associated with the bending

rotations 0y and 0z is assumed to be negligible and is therefore not

included in the total kinetic energy.

Evaluation of the integrals of Eqs. (A-8) and (A-9) yields the

following element stiffness and mass matrices:

[K]e=E

=A 0 0 0 0 0 -A 0

121z 61z -- 121z
0 0 0 _ 0

L 2 L L 2

121y --61,
0 _ 0 0

L 2 L

GJ

E

Sym.

0 o o o

4ly o o o

-61z
41z O

A 0

121z

L 2

o o o o

o o 0
L

-1% -.6Iy0 0
L 2 L

--GJ
o o o

E

61y o 2I, o
L

0 0 0 21z

0 0 0 0

---6Iz
0 0 0

L

121, 6I,
o _ o

L 2 L

GJ
E

0 o

4/y o

4/z

(A-10)
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[M] e =

420

140 0 0

156 0

156

Sym.

0 0 0 70 0 0 0 0 0

0 0 22L 0 54 0 0 0 -13L

0 -22L 0 0 0 54 0 13L 0

140Ip 70Ip
0 0 0 0 0 0 0

A A

4L 2 0 0 0 -13L 0 -3L 2 0

4L 2 0 13L 0 0 0 -3L 2

140 0 0 0 0 0

156 0 0 0 -22L

156 0 22L 0

1401p 0 0
A

4L 2 0

4L 2

(A-11)

Similarly, the external work expression for the space frame element

subject to uniformly distributed loads can be written as

L

(A-12)

where px, py and pz are forces per unit length in the x, y and z direc-

tions and m,,, my, mz are moments per unit length about the x, y and z

axes. Evaluation of Eq. (A-12) using Eqs. ((A-I) - (A-5)) and assum-

ing p,,, py, Pz as well as m x, my, mz, are constants (uniformly distributed)
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leads to the following form for the work equivalent load vector

p_-, mxL pz L2 pyL 2

mz ' 2 +my, 2 ' 12 ' 12 '

pj-, mxL pzL 2 pyL 2 }
pxL pyl., +mz -- -my, , ,

2 ' 2 ' 2 2 12 12 (A-13)

A.2 Prismatic Truss Element

The space truss element, shown in Fig. A2, is a two node ele-

ment oriented with the longitudinal axis in the local x direction. The

element is assumed to have a linear displacement state of the form

xx/:/u(x)= [1 - T' T ]

(A-14)

where u is the displacement in the x direction. This assumed displace-

ment state leads to the following strain-displacement relation

11 /:1---g-f-= t L , L

(A-15)

The strain and kinetic energies for the truss element can now be writ-

ten as

_U =-- T dx
2 o

and

1
= 7 {ul u2}[K]'{ulu2} r

(A-16)
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F oA _ _u r _u
= 2 {--_-t} {-_-}dx

O

1

which leads to the following

matrix in local coordinates

expression for the element stiffness

[_11-:]
EOe- 6;]

(A-17)

(A-18)

Similarly, the external work due to a uniformly distributed axial load

Px can be written as

L

W = f Px u(x)dx = {P} er {ulu2} T
o (A-19)

which leads to the following work equivalent load vector

{p}e = _pxL {1 1}T
2 (A-20)

Rewriting [K]', [/14]"and {p}e in terms of the full twelve nodal degrees
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of freedom gives

E
[Ky = --L

0

0

0 0

0 0

0 0

0

0

0

0

0

0

Sym.

0 -A 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

A 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

(A-21)
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and

2 0

0

{p} e_

0 0

0 0

0 0

0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0

Sym.

2

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0

p_
=T {t ooooo 1 ooooo}

I

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

(A-22)

(A-23)
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APPENDIX B

Position and Velocity Feedback Gain Matrices for

Member Controller Element

The member controller element shown in Fig. B1 represents a

force actuator connected between two nodes of the structural model.

The element is oriented with the longitudinal axis in the local x coor-

dinate direction. It is assumed that the actuator exerts a force propor-

tional to the relative nodal displacements and velocities. For the k-th

dynamic load condition, these forces can be written as

f l_(t) = hpt(U2-Ul) k + hvk(tt2-t_l)
(B-l)

f2k(t) = --flk(t) = hpk(Ul-U2) k + hvk(tJl-U2) k
(B-2)

where u and _i are the nodal displacements and velocities in the local x

direction and where hp, and hv_ are the relative position and velocity

feedback gains. Equations (B-l) and (B-2) can be combined in matrix

form as

fl(t) -1 1 -1
f2(t))k =-ht" [-11 1 ]{u:} -hv' [-1 1 ](_)k

(B-3)

or

{PAl'S:= -- [H,,,]I,{U]'I,- {a]'1,
(B-4)

where {FA}ek is the member controller force vector and where the ele-

ment level feedback gain matrices are given by
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and

1 -1][Hp]_ = hp, -1 1 (s-5)

(B-6)
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APPENDIX C

Alternative Steady State Response Solution Scheme

Consider the 2n x 2n system of simultaneous linear algebraic

equations given by (see Eq. (3-25))

'2[CA] -I- '_[K ] [KA]-_'_2 [M] ] _{CR} }_ I{0} l
[KA]-['_2[M] -_-_[Ca] - "_¢[K] L{Cl} L{P}J (C- 1)

where the load condition subscripts k have been omitted for conveni-

ence. In a more compact notation Eq. (C-l) can be written as

[B] -[AI {cl} {P} (C-2)

Equation (C-2) is equivalent to the following two equations:

[A]{cR} + [B]{cl} = {0}
(C-3)

[B]{cR} - [A]{ct} = {e}
(C-4)

As an alternative to solving Eq. (C-l) directly, these two equations can

be solved simultaneously.

One possible way of solving Eqs.

solve Eq. (C-3) for {cl}, giving

{ct} =- [D]{cR}

where

[D] = [B]-I[A]

can be obtained by solving

(C-3) and (C-4) is to first

(c-5)

(C-6)
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[B][D] = [A]

Substituting Eq. (C-5) into Eq. (C-4) yields

([A][D] + [B]){CR} = {P}

(C-7)

(c-8)
Finally, Eq. (C-8) can be solved for {cR} with {cl} being subsequently

obtained from (see Eq. (C-3))

[B]{cl} =- [A]{cR} (C-9)

The approach outlined above is susceptible to numerical

difficulties near resonance as the matrix [B] becomes nearly singular.

As a means of avoiding this problem Eq. (C-3) can be solved first for

{cR}, giving

{cR} = - [E]{cl}

where

[El : [A]-I[B]

can be obtained by solving

[A][E] - [B]

Substituting Eq. (C-10) into Eq. (C-4)

([B][E] + [A]){cl} = - {P}

Finally, Eq. (C-13) can be solved for {ct}

from (see Eq. (C-3))

[A]{CR} =- [B]{Cl}

(C-10)

(C-11)

(C-12)

(C-13)

with {cR} being obtained

(C-14)
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This later approach will be numerically stable as long as the

matrix [A] is non-singular. This can usually be ensured through the

use of a small, but reasonable, amount of structural damping.
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APPENDIX D

Derivatives of Structural Response Quantities with

Respect to Reciprocal Element Properties

D.1 Static Displacement Derivatives

For the linear static structural analysis problem, the displacement

derivatives are easily obtained through the implicit differentiation of

the governing equilibrium equations with respect to the reciprocals of

the element properties. In general, differentiation of Eq. (3-1) with

respect to the j-th reciprocal property of the i-th element (xij) yields

3[K] _{u}k _{P}t

OXij {U}k + the] OX""_ = OX"--"_ ; k= 1,2,...K s (D-l)

Under the assumption that the external loads are independent of xij (i.e.

_{t'}k

bx/j
= 0) Eq. (D-I) becomes

where the pseudo load vector _jk is given by

_jk = _[K]
_xo {u}k (D-3)

The system stiffness matrix [K] can be written as

I

_1 (D-4)

where [K][ is the element stiffness matrix in local coordinates, [T]z is

the element coordinate transformation matrix, [13]i is the element local
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number of structural elements.

to global degree of freedom transformation matrix and I is the total

Substituting Eq. (D-4) into Eq. (D-3)

gives

= _[ ]T[rjr at f
axq

Finally, Eq. (D-5) may be rewritten as

-- 1

where it is recognized that

[TJi[_]i {u}k
(D-5)

(D-6)

(D-7)

is the unit element stiffness matrix formed by assigning the j-th section

property a value of unity while the remaining section properties are set

to zero.

Using the expression for the pseudo load vector given by Eq.

(D-6), Eq. (D-2) can be solved for the unknown displacement deriva-

tives via the same procedure used to solve the equilibrium equations

(Eq. (3-1)). Solving Eq. (D-2) directly yields the derivative values for

all of the displacement degrees of freedom. For the case where the

number of displacement degrees of freedom associated with the

retained constraint set is fewer than the number of pseudo load vectors

associated with Eq. (D-2) it is computationally more efficient to solve

Eq. (D-2) using a partial inverse technique represented by the equation
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_{UR}k

= tcl : (D-8)

where {uR} k represents the displacement degrees of freedom associated

with the retained constraint set. The partial inverse matrix [C] is con-

structed such that its n-th row contains the vector {c}_r obtained from

the solution of the equation

[K]{c}n = {e}n
(D-9)

where {e}n is a unit vector corresponding to the n-th degree of freedom

associated with the retained constraint set. It should be noted that the

solution of either Eq. (D-2) or Eq. (D-9) requires only the back substi-

tution of the vectors _jk or {e}_ if the decomposed stiffness matrix has

been saved from the previous structural analysis.

D.2 Static Element Force Derivatives

The static element force derivatives are obtained through the

implicit differentiation of the element force-displacement relations.

Rewriting Eq. (3-8) in the global coordinate system gives

{F}_ k = [K]_ {U}r k "4-{FEF}_ k
(D-10)

where {F}_k, [K]_, {U}rk and {FEF}grk are the element force vector,

stiffnessmatrix, vector of nodal displacements and fixed end force

vector for the r-th element and k-th load set. Differentiationof Eq.

(D-10) with respect to x# gives
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_xq

_[hqg, _{U}rk _{FEF}gr_

{U}r k "b [K]gr _x.--_ "1- _xij

a{u},k
; i,r

; i=r

(D-11)

a{u},k
where the displacement derivatives -ax_

q

are calculated as described

previously. Under the assumption that the external loads are indepen-

dent of the element properties

=0
(D-12)

and Eq. (D- 11) becomes

_[ g]gr _{ U } rk

_x---7 {ul,k+Ehq,s_i_

a{U}rk
[K]gr _ ; i _: r

• OXij

; i=r

Rewriting [K]_ as

= [TI,[K],[TI,[K]_ r •

and substituting into Eq. (D-13) yields

(D-13)

(D-14)
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; i=r

[rff[X]r'[Tlr _{U},k
OXij ; i _ r (D-15)

Introducing the unit element stiffness matrix [K]_, Eq. (D-15) becomes

b{F}rg k

bxij

1 T "e
-- _'_ ([T]r [K ]rj[T])r{U}rk

_/_
+ mT[xJ_[_qr _{U}rk

_xij ; i = r

r , b{u},k
[T]r[K]r[T]r _xij ; i # r (D-16)

Finally, writing the element force derivatives in the local coordinate

system gives

/){F}rek O{F}rgk

_xij - [T]r Ox_i (D-17)

or

_xij

_ 1 •
•"-_..[f]_[T]r{U}rk+[K]e[T]r b{U}rk ; i=r

oxij

b{u},k

[K]re[T]r _x'--'_ ; i # r (D-18)

since, by orthogonality of [T],,

[T]r[T] T -" [T]r[T]r 1 = [Jr]

(D-19)
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D.3 Dynamic Displacement Derivatives

The derivatives of the steady state dynamic

corresponding to the k-th dynamic loading condition

{P(0}t = {P}k e/ha

can be obtained through the implicit differentiation of Eq.

respect to xij, giving

a{U}k a{uR}k a{ul}k
_=_+i_

OXij aXij _Xij

where, assuming that flk is independent of xij,

a{UR}k a{CR}K a{q}k
= cos f_g

_Xiy _xij Oxij

sin f2et

and

a{UZ}k a{CR}k a{Cl}k
= sin f_et +

3xq 3xq 3xq
cos _

displacements

(D-20)

(3-27) with

(D-21)

(D-22)

(D-23)

Similarly the derivatives of the magnitude

placement are obtained by differentiating Eq.

yielding

of the r-th dynamic dis-

(3-32) with respect to xq,

_lurkl = (_,_ + _)_lrZ [ OcR,_ @c_,_]_x---_j cR" _'-_ + ci,_ _ (D-24)

In both cases, the derivatives of cR and ct with respect to xq are

obtained via the implicit differentiation of Eq. (3-25). Writing Eq. (3-

25) in the following compact notation,
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and differentiating with respect to x/y yields

a[A]k a[B]k

3xq 3xij

+

3xq

(D-25)

{O}k

a{P}k

_x/j

(D-26)

Under the assumption that the external loading conditions are indepen-

dent of xij Eq. (D-26) can be written as

axi) =. vl,,,

o ,j
(D-27)

where the pseudo load vectors v/_ and 9-R0. are given by

_ ,:3[A]k ,3[B]k

vi,,_= 3x_j {cR}k 3x_j {q}k (D-28)

and

_ 3[B] k 3[Alk

VR,,_= bxij {@}k + bx-_j {cth' (D-29)

Substituting for [Ah, and [Bh, (see Eq. (3-25)), Eqs. (D-28) and (D-29)
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become

and

(D-30)

D _E_1 k

[_ _[CA]k _[K] ]f_, o_ i {cR},+ +, {c,},k (D-31)

As was the case for the static displacement constraints, the partial

derivatives of the global matrices [K], [Kak, [Ca]k and [M] with respect

to xq can be formed via transformation of the element level unit

matrices (see Eqs. (D-4) - (D-7)). Once obtained, these quantities can

be substituted into Eqs. (D-30) and (D-31), yielding the values for the

pseudo load vectors. Having formed the pseudo load vectors, the par-

tial derivatives of {cR}k and {ct}k with respect to Xij are obtained by

solving Eq. (D-27) either directly or via the partial inverse technique

described previously. Finally, the partial derivatives of either the

dynamic displacements or their magnitudes with respect to xii are given

by substituting these partial derivatives into either Eq. (D-22), and Eq.

(D-23), or Eq. (D-24).

D.4 Member Controller Force Derivatives

The membrane controller force derivatives are given by the

implicit differentiation of the actuator force-displacement relations.

Rewriting (Eqs. (3-39) - (3-43) in the global coordinate system for the

r-th actuator gives
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where

{FA}_k = {FAR}rgk+ i {FA/}rgk

(D-32)

and where

{FaR}rgk = -- {F2}_k sinf2_ + {F1}rgk COSf_t.t

{FA/}rgk= + {F1}rgksinf_et+ {F2}rgkCOSf2_

(D-33)

(D-34)

(D-35)

{F2}rgk= - _k [Hv]grk{CR}grk--[Hp]grk{Cl}grk
(D-36)

Differentiating Eqs. (D-32) - (D-34) with respect to xij and assuming

f_k is independent of x# yields

= +i

Oxij _xij _xij (D-37)

_{FAR}grk _{F2}rgk _}{F1}_k

_xij _xij sinf_kt + _xq c°s_er (D-38)

where

_{FAl}grk _{Fl}rgk _{F2}gk

_Xij -- + _Xij sinOg + _Xij COS_C_/ct (D-39)

bxU

• g P • •

....I--[Hp]rk{ CI}rk--[HP]grk{¢I}rk--_'_k ([Hv]grk{ ¢R}rkH'[Hv]grk{ CR}rk) ) ,

i
-[Hp]grk{Ci}rk- _k[Hv]grlc{C'R}rk ; i _ r (D-40)
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t v v •

_{F_},gk__x_= {" --[Bp]_k{cR},k-[Hp]grk{CR}rk+,, ak([n,]rgk{C_}rk+ [H_]_k{q},k) ; i = r

,--[Hp]grk{CR}rk+ ak[Hv]grk{Cl}rk ; i # r (D-41)

and where the prime (') denotes differentiation with respect to x0 (i.e.

[Hj,],gk= O[Hpl,gdOx0). Rewriting [Hpl_kand [Hv],gkas

[_r[Hp]rk[T]r
(D-42)

[Hv]grk T •= [T]r[Hv]rk[T]r

(D-43)

and pre-multiplying both sides of Eqs. (D-33) and (D-34) by IT], leads

to the following expression for the actuator force derivatives in the

local coordinate system:

_{FA}_k _){FAR}rek _{FA1}retc
= +i

_Xij _Xij _Xij (D-44)

where

_{FAR},_ _{F2}_k _{Fa}_k

_Xij _Xij sinf2g + _Xij COS_2kt (D-45)

b{Fat},_ 3{F1 },ek b{F2}rek

_xij = + _xi i sin_kt + bxij cos_kt (D-46)

and where

e e _ £ • £ e

([Hv]r_.{cR}rk + [Hv]rk{CR}rk)

"-[np],dct},k-[npl,dct},:ak " " " "

O{F2}e/c

=
e t e £ t £ .

• --[HA_k{Cl},k--_'lk[H_],k{CS}rj, , i _ r

;i=r

(D-47)
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[_] k+_ ' {_} e {_y[Hp] {¢R} " e e ]rk rk) , i= r_ e e e e ]rk rk -t- [H vrk rk-- rk{CR}r k ([Hv

a{F1}_kb__U- t
e " e t

_2k[Hv]rk{Vl}rk , i _ r--[Hp]rk{CR}rk+ _ _ "
and

(D-48)

{c_}r_= [T],{c_},k (D-49)

t

{Cl}erk -- [T]r a{¢l}r-------_k (D-50)
bxij

{¢R}r5 = [T]r{CR}rk (D-51)

I{cR};k = [T], b{CR}rk (D-52)
bx/j

Finally, the derivatives of the magnitudes of the actuator forces

are easily obtained by differentiating Eq. (3-48) with respect to xij,

yielding (for the r-th actuator)

al_A,_l = [(_,_)2 + (F_)21-1a _F_,, F e
_gxq "_ ax---_j+ _" _gxij (D-53)

aPL a_,_
where and

3xij _xq
are obtained from Eqs. (D-47) and (D-48),

respectively.

D.5 Eigenvalue Derivatives

The derivatives of the structural eigenvalues are obtained by

implicitly differentiating Eq. (3-53) with respect to xii. Rewriting Eq.

(3-53) as

[[K] - _2 [M]]{t_} "- {0} (D-54)

and differentiating with respect to xq gives
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t)[K] {t_} + [K] (){0} _0)2 [M]{t_} - oy2 O[M]

3xo 3x o 3x o 3x o
{t_} -- 0)2[M] _{t__._} = {0}

3xij

(D-55)

Pre-multiplying Eq. (D-55) by {¢_}r and simplifying yields

{t_}T[ _[g]t)x/j 0)2 _[M]]t)x/j
{¢} -

a0) 2

3xo {_}rEM]{_} +

{q_}T[ [K]- 0)2 [M]] t){O-----_}
3xo

By symmetry of [K] and [M]

= {0}
(D-56)

(D-57)

Using Eq. (D-57), Eq. (D-56) yields the following expression for the

eigenvalue derivative:

30) 2

3xo {¢}T[M]{¢} (D-58)

For the case where the eigenvectors are normalized with respect to the

mass matrix Eq. (D-58) simplifies to

30)2 [ a[K]
0)2 o3[M] ] {t_}

axo j (D-59)
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Table 1. Iteration History Data for Problem 1, Case A

Cantilevered Beam, Mass Minimization

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled

Number 1 actuator 2 actuators

0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [99.6]

1 1560.58 [18.9] 1686.56 [13.3] 1788.09 [0.8]

2 1287.93 [0.0] 1300.05 [0.0] 1314.18 [0.0]

3 1024.38 [0.0] 986.48 [0.0] 964.97 [0.0]

4 821.50 [0.0] 766.04 [0.0] 733.67 [0.0]

5 682.32 [0.0] 617.74 [0.0] 582.34 [0.0]

6 588.90 [0.0] 522.04 [0.0] 485.25 [0.0]

7 545.57 [0.0] 477.55 [0.0] 440.14 [0.0]

8 545.57 [0.0] 470.96 [0.0] 434.40 [0.0]

9 545.57 [0.0] 470.65 [0.0] 434.11 [0.0]

10 470.49 [0.0] 434.03 [0.0]
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Table 2. Final Designsfor Problem1, CaseA
CantileveredBeam,MassMinimization

Final Design(cm, Nt/cm, Nt-sec/cm)

Element Element Design Uncontrolled Controlled Controlled
Type Numbers Variables 1 actuator 2 actuators

tb 2.0141 1.6663 1.4975

Frame 1-10

th .5000- .5000- .5000-

hp 79.3672 79.6817
1

h u .4216 .3588

Control

hp 82.6042
2

h v .4012

- denotes lower bound value
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Table 3. Final Design Response Ratios for Problem 1, Case A

Cantilevered Beam, Mass Minimization

Response Ratio (Rq)"
Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators

Tip Displacement

Frequency

Actuator Force (1)

Actuator Force (2)

Total Control Force

.98958

.65137

.99783 .99665

.69271 .72034

.99829 .99871

.74927

.57045 .99884

* Rq = 1.0 indicates that the constraint is critical

119



Table 4. IterationHistory Data for Problem1, CaseB

Cantilevered Beam, Mass Minimization

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators

0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [96.8]

1 1435.58 [5.0] 1445.70 [2.0] 1451.64 [0.0]

2 1060.17 [0.0] 1055.86 [0.0] 1051.61 [0.0]

3 774.72 [0.0] 768.06 [0.0] 762.12 [0.0]

4 571.01 [0.0] 563.48 [0.0] 557.37 [0.0]

5 428.23 [0.0] 420.22 [0.0] 413.16 [0.0]

6 329.83 [0.0] 318.91 [0.0] 311.01 [0.0]

7 293.13 [0.0] 279.29 [0.0] 270.72 [0.0]

8 292.16 [0.0] 276.10 [0.0] 267.58 [0.0]

9 292.16 [0.0] 275.51 [0.0] 266.83 [0.0]

10 274.68 [0.0] 266.09 [0.0]
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Table 5. Final Designsfor Problem 1,CaseB
CantileveredBeam,MassMinimization

Final Design (cm, Nt/cm, Nt-sec/cm)
Element Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

Fral'ne

Control

1-2 tt, 1.6100 1.3974 1.2824

3-4 t/, 1.0570 0.8998 .8156

5-6 tb .5350 .5000- .5000-

7-8 tt, .5000- .5000" .5000-

9-10 tt, .5000" .5000- .5000-

1-10 th .5000" .5000" .5000-

ht, 74.3907 75.2934
1

hv 1.2213 1.0236

ht, 79.4161
2

hv 1.5079

- denotes lower bound value
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Table 6. Final DesignResponseRatios for Problem1, CaseB
CantileveredBeam,MassMinimization

ResponseRatio (Rq)"
Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators

Tip Displacement

Frequency

ActuatorForce(1)

ActuatorForce(2)

Total Control Force

1.00006

.11758

.99793 .99725

.30830 .41180

1.00023 .98929

.75857

.57156 .99877

* Rq = 1.0 indicates that the constraint is critical
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Table 7. Iteration History Data for Problem 2, Case A

Cantilevered Beam, Response Minimization

Tip Displacement (cm) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators

0 24.14 [241.4] 15.73 [244.1] 12.86 [99.6]

1 10.29 [43.1] 8.19 [54.2] 8.78 [39.4]

2 8.05 [10.7] 7.06 [11.6] 7.45 [2.1]

3 6.51 [0.1] 5.89 [0.1] 5.57 [0.4]

4 5.55 [0.3] 5.06 [0.2] 4.83 [0.2]

5 5.30 [0.0] 4.82 [0.0] 4.60 [0.0]

6 5.30 [0.0] 4.53 [0.0] 4.20 [0.0]

7 5.30 [0.0] 4.35 [0.9] 3.81 [0.7]

8 4.33 [0.1] 3.78 [0.2]

9 4.31 [0.1] 3.76 [0.1]
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Table 8. Final Designsfor Problem2, CaseA
CantileveredBeam,ResponseMinimization

Final Design (cm, Nt/cm, Nt-sec/cm)
Element Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

tb 4.1210 4.1208 4.1207

Frame 1- 10

th .5000- .5000- .5000

hp 166.7668 195.1923
1

h v 3.3558 3.4610

Control

hp 190.9900
2

h v 4.6705

- denotes lower bound value
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Table 9. Final Design Response Ratios for Problem 2, Case A

Cantilevered Beam, Response Minimization

Response Ratio (Rq)"
Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators

Mass

Frequency

Actuator Force (1)

Actuator Force (2)

Total Control Force

1.00045

.61204

1.00041 1.00039

.61204 .61203

1.00089 .99954

.75220

.57194 1.00100

* Rq = 1.0 indicates that the constraint is critical
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Table 10. IterationHistory Data for Problem2, CaseB
CantileveredBeam,ResponseMinimization

Tip Displacement(cm) [Maximum ConstraintViolation (%)]
Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators

0 24.14 [241.4] 15.73[244.1] 12.86[99.6]

1 15.51[55.1] 10.84[40.9] 7.46 [26.2]

2 20.87 [208.7] 11.43[27.1] 3.23 [0.0]

3 4.20 [0.0] 4.60 [0.0] 2.05 [0.2]

4 2.71 [0.0] 2.81 [0.0] 1.65[0.0]

5 2.12 [0.0] 2.03 [0.0] 1.48[0.0]

6 1.93 [0.3] 1.72 [0.7] 1.36 [3.1]

7 1.85 [0.2] 1.55[0.2] 1.27 [6.6]

8 1.81 [0.2] 1.45[0.3] 1.27[0.8]

9 1.79 [0.0] 1.43 [0.7] 1.26 [0.6]

10 1.79 [0.0] 1.43 [0.7] 1.26 [0.9]

11 1.79 [0.0] 1.43 [0.2] 1.25 [0.2]
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Table 11. Final Designsfor Problem2, CaseB
CantileveredBeam,ResponseMinimization

Final Design (cm, Nt/cm, Nt-sec/cm)
Element Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

Fralne

Control

1-2 tb 8.2810 8.2805 8.2701

3-4 t b 6.2360 6.2388 6.2426

5-6 t b 3.8119 3.8149 3.8490

7-8 tt, 1.7654 1.7634 1.7670

9-10 tb .5000" .5000- .5000-

1-10 th .5000" .5000" .5000"

hp 554.9204 635.5459
1

h v 3.3034 3.0415

ht, 739.5169
2

h v 4.1872

- denotes lower bound value
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Table 12. Final DesignResponseRatios for Problem2, CaseB
CantileveredBeam,ResponseMinimization

ResponseRatio (Rq)"
Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators

Mass

Frequency

ActuatorForce(1)

ActuatorForce(2)

Total Control Force

1.00000

-2.46838

1.00014

-2.46920

1.00191

.57252

1.00148

-2.46126

1.00245

.75143

1.00222

* Rq = 1.0 indicates that the constraint is critical
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Table 13. Iteration History Data for Problem 3, Case A

Cantilevered Beam, Control Force Minimization

Control Force (Nt) [Maximum Constraint Violaton (%)]

Analysis Actuator No. 1 Actuator No. 2 Combined

Number

0 1621.8 [261.3] 1326.9 [294.9] 2429.4 [259.5]

1 1790.3 [200.9] 1374.7 [217.7] 2816.0 [198.2]

2 2339.4 [70.7] 1945.1 [79.8] 3535.1 [47.8]

3 3178.6 [23.6] 2829.9 [50.6] 4168.7 [0.0]

4 3591.7 [0.0] 3731.6 [39.6] 3991.8 [0.0]

5 3379.6 [0.0] 4696.5 [17.4] 3844.3 [0.0]

6 3194.7 [0.0] 4174.6 [24.6] 3719.9 [0.0]

7 3055.5 [0.0] 4106.4 [12.1] 3518.1 [0.0]

8 3000.0 [0.0] 4213.1 [5.3] 3323.9 [0.0]

9 2879.6 [0.0] 3990.6 [0.1] 3191.5 [0.0]

10 2854.3 [0.0] 3955.0 [0.1] 3114.7 [0.0]

11 2835.7 [0.0] 3916.7 [0.1] 3000.6 [0.0]

12 2946.6 [0.0]

13 2920.3 [0.0]

14 2887.8 [0.0]

15 2871.1 [0.0]
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Table 14. Final Designs for Problem 3, Case A

Cantilevered Beam, Control Force Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Actuator #1 Actuator #2 Combined

Type Numbers Variables

tb 1.3391 1.3413 1.3400

Frame 1-10

th .5000" .5000" .5000-

hp 559.8847 548.3611
1

h v 4.6400 3.5447

Control

he 1080.5325 30.8545
2

h v 10.6129 0.6400

- denotes lower bound value
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Table 15. Final Design Response Ratios for Problem 3, Case A

Cantilevered Beam, Control Force Minimization

Response Ratio (Rq)"

Constraint Actuator #1 Actuator #2 Combined

Mass .99957 1.00075 1.00009

Tip Displacement .99407 .99170 .99060

Frequency .75210 .75161 .75188

Actuator Force (1) .70894 .68747

Actuator Force (2) .97918 .03187

* Rq = 1.0 indicates that the constraint is critical
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Table 16. Iteration History Data for Problem 3, Case B

Cantilevered Beam, Control Force Minimization

Control Force (Nt) [Maximum Constraint Violaton (%)]

Analysis Actuator No. 1 Actuator No. 2 Combined

Number

0 1191.2 [225.0] 1378.0 [228.1] 1847.8 [202.7]

1 1269.4 [42.4] 1434.3 [47.1] 1841.1 [33.6]

2 1617.8 [8.2] 1805.5 [14.2] 1625.6 [5.4]

3 1343.8 [0.0] 1543.5 [0.0] 1318.3 [0.0]

4 1127.9 [0.0] 1409.1 [0.0] 1167.0 [0.0]

5 964.6 [0.0] 1341.9 [0.0] 1074.7 [0.0]

6 902.2 [0.0] 1251.4 [0.0] 997.4 [0.0]

7 842.9 [0.0] 1231.9 [0.0] 950.9 [0.0]

8 822.0 [0.1] 1218.4 [0.1] 897.1 [0.0]

9 812.2 [0.1] 1214.8 [0.1] 879.2 [0.1]

10 811.4 [0.1] 1214.8 [0.1] 871.1 [0.0]

11 810.5 [0.1] 867.4 [0.1]

12 866.6 [0.1]
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Table 17. Final Designs for Problem 3, Case B

Cantilevered Beam, Control Force Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Actuator #1 Actuator #2 Combined

Type Numbers Variables

Frame

Control

1-2 tb 2.7099 2.7013 2.6999

3-4 tb 1.9018 1.8976 1.9151

5-6 tb 1.0813 1.1018 1.0857

7-8 tb .5000- .5000- .5000-

9-10 tb .5000- .5000- .5000"

1-10 th .5000- .5000" .5000-

hp 196.9884 172.6867
1

h v 1.9062 1.5341

hp 452.6438 52.3790
2

h v 4.1980 1.2029

- denotes lower bound value
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Table 18. Final Design Response Ratios for Problem 3, Case B

Cantilevered Beam, Control Force Minimization

Response Ratio (Rq)"

Constraint Actuator #1 Actuator #2 Combined

Mass .99932 1.00015 1.00016

Tip Displacement 1.00092 1.00100 1.00091

Frequency -.81666 -.81196 -.81387

Actuator Force (1) .20264 .17686

Actuator Force (2) .30370 .04000

* Rq = 1.0 indicates that the constraint is critical
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Table 19. IterationHistory Data for Problem 4

Cantilevered Beam, Multiple Loading Conditions

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled

Number 1 actuator 2 actuators

0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [199.6]

1 1435.58 [5.0] 1445.70 [2.0] 1450.12 [0.0]

2 1060.25 [0.0] 1056.75 [0.0] 1050.51 [0.0]

3 774.67 [0.0] 764.82 [0.0] 762.41 [0.0]

4 586.29 [0.0] 559.22 [0.0] 559.19 [0.0]

5 525.75 [0.0] 482.77 [1.2] 434.07 [0.0]

6 502.78 [0.0] 446.32 [0.0] 363.08 [0.0]

7 491.28 [0.0] 425.22 [0.7] 318.91 [0.3]

8 484.39 [0.0] 409.00 [0.0] 297.34 [0.0]

9 478.81 [0.0] 399.44 [0.3] 288.51 [0.0]

10 476.29 [0.0] 397.69 [0.1] 288.40 [0.3]

11 475.00 [0.0] 397.20 [0.0] 283.72 [0.0]

12 473.58 [0.0] 397.03 [0.0] 281.41 [0.0]

13 473.18 [0.1] 396.90 [0.0] 281.20 [0.0]

14 473.18 [0.1] 281.20 [0.0]

135



Table 20. Final Designs for Problem 4

Cantilevered Beam, Multiple Loading Conditions

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

1-2 tb 2.1628 1.9997 1.0930

3-4 tb 1.6528 1.2940 .9583

Frame 5-6 tt, 1.3692 .9611 .7579

1-6 t h .5000- .5000- .5000-

tb 1.0222 .7462 .6138
7-8

th .6024 .5308 .5000-

tb 1.3199 1.0629 .5251

9-10

th 1.3012 1.0493 .5000-

hp 20.7929 68.3930
1

h v 3.1488 1.6856

Control

hp 96.0628
2

h v 2.4295

- denotes lower bound value
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Table 21. Final Design Response Ratios for Problem 4

Cantilevered Beam, Multiple Loading Conditions

Response Ratio (Rq)"
Constraint Loading Uncontrolled Controlled Controlled

Condition 1 actuator 2 actuators

Tip Displacement

Tip Rotation

Frequency (u.b.)

Actuator Force (1)

Actuator Force (2)

1 1.00076

2 .98334

3 .60900

.94251

1

2

1

2

1.00010

.99097

.73928

.98495

.99901

.25756

.99867

.99887

1.00003

.99572

.99739

.85395

.99934

.88125

* Rq = 1.0 indicates that the constraint is critical
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Table 22. IterationHistory Data for Problem5
CantileveredBeam,LumpedMassDesignElements

Mass(kg) [Maximum ConstraintViolation (%)]
Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators

0 1947.60[335.8] 1947.60[279.5] 1947.60[219.1]
1 1445.78[22.3] 1470.50[16.0] 1477.12[0.0]
2 1445.41[3.3] 1091.00[0.0] 1082.43[0.0]
3 1070.74[0.0] 784.28[0.0] 776.74[0.0]
4 786.11[0.0] 579.72[0.0] 573.58[0.0]
5 592.42[0.0] 462.35[0.0] 447.21[0.0]
6 523.86[0.0] 421.49[0.0] 378.56[0.0]
7 500.25[0.0] 402.11[0.0] 337.62[0.0]
8 488.48[0.0] 391.04[0.2] 317.22[0.0]
9 479.45[0.0] 388.08[0.1] 301.70[0.9]

10 474.24[0.0] 387.80[0.1] 290.24[0.0]
11 472.14[0.0] 387.80[0.1] 285.13[0.0]
12 471.40[0.0] 284.81[0.2]
13 470.87[0.0] 283.76[0.1]
14 470.32[0.0] 283.55[0.1]
15 469.74 [0.0] 283.37[0.1]
16 469.41 [0.0]
17 468.90[0.1]
18 468.90[0.1]
19 468.90[0.1]
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Table 23. Final Designsfor Problem5
Cantilevered Beam, Lumped Mass Design Elements

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

1-2 tb 2.1284 1.9958 1.1297

3-4 tb 1.7070 1.3627 .9633

5-6 tb 1.3557 .8371 .7831
Frame

7-8 tb 1.0189 .6469 .5395

1-8 th .5000- .5000- .5000-

tb 1.1861 .9707 .5000-

9-10

th 1.2065 .9586 .5000"

hi, 20.2639 68.7099
1

h v 3.1582 1.7001
Control

hp 93.0644
2

h v 2.6498

1 m 4.3082 3.2333 1.7656

Mass

2 m 5.0644 3.4966 1.8026

- denotes lower bound value
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Table 24. Final DesignResponseRatios for Problem5
CantileveredBeam,LumpedMassDesignElements

ResponseRatio (Rq)*
Constraint Loading Uncontrolled Controlled Controlled

Condition 1 actuator 2 actuators

Tip Displacement

Tip Rotation

Frequency(u.b)

Actuator Force(1)

Actuator Force(2)

1 1.00070 1.00073 .99240

2 .99900 .99907 .96440

3 .61209 .77017 1.00081

.94385 .99922 .99872
1 1.00070 .99677

2 .25306 .99242

1 .82830

2 .82127

* Rq = 1.0 indicates that the constraint is critical
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Table 25. IterationHistory Data for Problem6
CantileveredBeam,IndependentActuator Gains

Mass(kg) [MaximumConstraintViolation (%)]
Analysis Controlled Controlled
Number 1 actuator 2 actuators

0 1937.60[244.1] 1937.60[99.6]

1 1445.70[2.0] 1450.12[0.0]

2 1056.75[0.0] 1050.51[0.0]

3 764.82[0.0] 762.41[0.0]

4 559.22[0.0] 559.19[0.0]

5 435.14[0.0] 434.07[0.0]

6 372.52[0.0] 362.88[0.0]

7 343.94[0.0] 318.18[0.5]

8 334.23[0.0] 296.23[0.0]

9 333.89[0.0] 286.76[0.0]

10 333.78[0.1] 281.17[0.0]

11 333.77[0.1] 281.11[0.0]

12 280.89[0.1]
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Table 26. Final Designs for Problem 6

Cantilevered Beam, Independent Actuator Gains

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

FralTle

Control

1-2 t b 1.4020 1.0626

3-4 t b 1.1673 .9112

5-6 t b .9463 .8546

7-8 t b .6508 .6126

1-8 t h .5000- .5000-

tb .7572 .5000-

9-10

th .7473 .5000-

hpl 77.3350 76.3698

hvl .7720 .9318

1

hp2 20.0000* 20.0000*

hv2 5.0000" 5.0000"

2

hpl 106.1478

hvt 1.5067

hp2 20.0000*

hvz 5.0000"

- indicates lower bound value

* indicates initial design value
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Table 27. Final DesignResponseRatios for Problem6
CantileveredBeam,IndependentActuatorGains

ResponseRatio (Rq)"
Constraint Loading Controlled Controlled

Condition 1 actuator 2 actuators

Tip Displacement

Tip Rotation

Frequency (u.b)

Actuator Force (1)

Actuator Force (2)

1

2

3

1

2

1

2

1.00063

.75560

.84822

.99178

.99582

.18890

1.00075

.54411

.99961

.98059

.99712

.13603

.99926

.09930

* Rq = 1.0 indicates that the constraint is critical
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Table 28. IterationHistory Data for Problem 7

Planar Truss, Control Force Minimization

Control Force (lbf) [Maximum Constraint Violation (%)]

Analysis Case I Case II Case 111

Number

0 264.91 [16.6] 264.91 [46.1] 264.91 [32.81]

1 289.48 [0.0] 295.97 [8.1] 329.07 [8.9*]

2 273.87 [0.0] 251.30 [0.0] 241.06 [10.2"]

3 261.23 [0.0] 196.44 [0.0] 170.59 [0.0]

4 236.34 [0.0] 159.51 [0.0] 131.08 [0.0]

5 212.26 [0.0] 134.16 [0.0] 109.39 [0.0]

6 181.52 [0.0] 116.94 [0.0] 89.71 [0.0]

7 171.31 [0.0] 94.11 [0.0] 70.27 [0.0]

8 162.92 [0.0] 83.93 [0.0] 56.79 [0.0]

9 158.91 [0.0] 77.63 [0.0] 44.94 [0.0]

10 157.82 [0.0] 70.91 [0.0] 40.22 [0.0]

11 156.55 [0.0] 64.77 [0.0] 39.99 [0.0]

12 156.53 [0.0] 62.63 [0.4] 39.75 [0.0]

13 156.51 [0.0] 60.97 [0.2] 39.51 [0.0]

14 60.24 [0.1] 39:27 [0.0]

15 60.24 [0.1]

* indicates that the constraint was not included in the approximate

problem
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Table 29. Final Designs for Problem 7

Planar Truss,Control Force Minimization

Final Design (in 2, lbf/in, lbf-sec/in)

Element Element Design Case I Case II Case III

Type Numbers Variables

Truss

Control

1 A .1000 .0418 .0384

2 A .1000 .2612 .0358

3 A .1000 .0418 .0380

4 A .1000 .1458 .1512

5 A .1000 .0884 .0304

6 A .1000 .1464 .1525

7 A .1000 .0474 .0430

8 A .1000 .0474 .0435

9 A .1000 .1318 .1918

10 A .1000 .1307 .1908

2

h e 137.6488 58.2634 30.8160

h v .8188 .4716 .8784

hp 170.0123 57.3637 31.1041

h v .9489 .4677 .8793

hp 3.2195 3.6974 5.0606
3

h v .1276 .1818 .8134

hp 3.2190 3.6981 5.0605
4

h v .1276 .1819 .8139
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Table 30. Iteration History Data for Problem 8

Antenna, Response Minimization

Displacement (cm)

[Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled

Number

0 .2914 [224.4] .3461 [232.9]

1 .3773 [27.6] .3204 [32.5]

2 .4055 [2.3] .2515 [4.3]

3 .3741 [0.0] .2297 [0.0]

4 .3382 [0.0] .2172 [0.0]

5 .3000 [0.0] .2027 [0.0]

6 .2667 [0.0] .1933 [0.0]

7 .2501 [0.0] .1863 [0.0]

8 .2501 [0.0] .1765 [0.0]

9 .2501 [0.0] .1649 [0.0]
10 .1552 [0.0]

11 .1478 [0.0]

12 .1478 [0.0]

13 .1478 [0.0]
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Table 31. Final StructuralDesignsfor Problem8
Antenna,ResponseMinimization

Final Design (cm)
Element Element Design Uncontrolled Controlled

Type Numbers Variables

2

Frame 3,4

5,6

7-8

b 25.0000 + 25.0000 +

h 18.5854 14.8938

t .7156 1.0000 +

b 23.7507 25.0000 +

h 21.5130 16.1376

t .5686 .6678

b 25.0000 + 25.0000 +

h 25.0000 + 25.0000 +

t .7222 1.0000 +

b 23.5134 20.7033

h 19.3385 15.1999

t .5687 .3616

b 22.6945 21.5850

h 24.1004 25.0000 +

t .5419 1.0000 +

+ indicates an upper bound value.
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Table 32. Final Design Actuator Forces for Problem 8

Antenna, Response Minimization

Actuator Forces (Nt)

Actuator Location Load Condition #1 Load Condition #2

(Node Number)

2 9.4292 9.6983

4 9.9723 9.6279

5 6.0490 9.2117

7 4.7160 9.5934
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Table 33. IterationHistory Datafor Problem9
Grillage

ObjectiveFunction (lb)

[Maximum Constraint Violation (%)]

Analysis Number Control Force Weight

0 9.00 [2.2] 94.20 [249.4]

1 18.53 [0.0] 89.82 [0.0]

2 11.73 [0.0] 85.43 [0.0]

3 7.29 [0.0] 77.42 [6.1]

4 6.70 [0.0] 67.94 [0.0]

5 5.94 [0.0] 61.76 [0.0]

6 5.32 [0.0] 59.00 [0.0]

7 4.66 [0.0] 58.02 [0.2]

8 4.50 [0.0] 58.04 [0.0]

9 3.68 [0.0] 57.55 [0.0]

10 3.65 [0.0] 57.07 [0.4]

11 3.61 [0.0] 56.85 [0.0]

12 56.72 [0.0]

13 56.14 [0.4]

14 55.57 [0.1]

15 55.49 [0.0]
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Table 34. ActuatorForces for Problem 9

Grillage

Actuator Forces (lb)

Actuator Location Initial Control Force Weight

(Grid Number) Minimization Minimization

1,11 .6396 .0277 .1339

3,9 1.0144 .1116 .0872

5,7 1.0571 .4320 .0397

23,33 .3260 .0321 .1297

25,31 .5777 .0242 .0618

27,28 .5754 .0207 .0730

45,55 .9735 .4037 .3301

47,53 1.0011 .0635 .0900

49,51 .8194 .0455 .0754

67,77 .9138 .5201 .5506

69,75 .7511 .0712 .0877

71,73 .6155 .0529 .0759
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Fig. 20 Grillage, Problem 9
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Fig. A2 Space Truss Element
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Fig. A3 Axial Control Element
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